Skip Navigation
search: People Opens New Window | Departments Opens New Window | Penn State Opens New Window | Web Opens New Window
Penn State mark
Penn State mark
University Bulletin
Undergraduate Degree Programs

Penn State University Park

Nuclear Engineering (NUC E) - Archive

ARCHIVED FILE
Begin Date: Spring Semester 2002
End Date: Fall Semester 2002

Nuclear Engineering (NUC E) - Archive

PROFESSOR RICHARD C. BENSON, Head, Department of Mechanical and Nuclear Engineering
PROFESSOR JACK S. BRENIZER, JR., Program Chair, Nuclear Engineering Program

Nuclear engineering, the practical application of the principles of nuclear science for the benefit of humankind, provides the engineer or scientist with an opportunity to work on challenging problems that are vitally important to the modern world. The goal of the program is to provide students with a strong academic background that enables them to pursue professional careers in nuclear and radiation-based industries, or to pursue graduate study in nuclear engineering or related fields such as medical physics, health physics, or another field of engineering.

Students graduating from the Penn State B.S. Nuclear Engineering program:

  1. are able to apply mathematics, science, and engineering science, including atomic and nuclear physics and the transport and interaction of radiation with matter, to identify, understand, analyze, and design nuclear systems;
  2. are able to detect and measure ionizing radiation, to use modern engineering tools, and to perform and design laboratory experiments to gather and analyze data and test theories;
  3. are proficient in the oral and written communication of their work and ideas; able to learn and work independently and also participate effectively in same-discipline and cross-discipline groups;
  4. understand the safety, environmental and societal consequences of their work as nuclear engineers in a global context; and
  5. are aware of contemporary issues; be prepared for a lifetime of continuing education; and prepared to conduct themselves in accordance with the highest professional and ethical standards.

The first two years of the program stress fundamentals in mathematics, chemistry, physics, computer programming, and engineering sciences such as mechanics, materials, and thermodynamics. The last two years provide the breadth and depth in nuclear science, behavior of heat and fluids, reactor theory and engineering, and radiation measurement. The laboratory work includes experiments using the University's 1,000-kilowatt research reactor. Engineering design is incorporated in many courses from the freshman year to the senior year, but is particularly emphasized in the senior capstone design course, which integrates the critical elements of reactor theory, reactor engineering, safety considerations and economic optimization into a reactor design.

Many graduates are employed by electric power companies that use nuclear power plants, or by companies that help service and maintain those plants. They use their knowledge of engineering principles, radioactive decay, interactions of radiation with matter, and nuclear reactor behavior to help assure that the power plants meet the demand for reliable, economic electricity while ensuring a safe environment. To do this, graduates must be problem solvers who could develop and use complex computer models and sophisticated monitoring systems, design systems to handle radioactive waste, determine if the materials in the plant are becoming brittle or corroded, or manage the fuel in the reactor to get the maximum energy from it. Other graduates work in industries that use radioactivity or radiation to detect problems or monitor processes. Jobs are also found in branches of the government as designers of the next generation of reactors for submarines, aircraft carriers, or space probes, or to manage and clean up contaminated wastes. They could also be involved with regulation of nuclear power or radiation uses, or in research to develop advanced technologies that will be used in next-generation power plants. Graduates who want to further their education in the fields of health physics, radiation biology, or nuclear medical applications find this degree to be a useful preparation.

For the B.S. degree in Nuclear Engineering, a minimum of 129 credits is required.

Scheduling Recommendation by Semester Standing given like (Sem:1-2)

GENERAL EDUCATION: 45 credits
(21 of these 45 credits are included in the REQUIREMENTS FOR THE MAJOR)
(See description of General Education in front of Bulletin.)

FIRST-YEAR SEMINAR:
(Included in REQUIREMENTS FOR THE MAJOR)

INTERCULTURAL AND INTERNATIONAL COMPETENCE:
(Included in GENERAL EDUCATION course selection)

WRITING ACROSS THE CURRICULUM:
(Included in REQUIREMENTS FOR THE MAJOR)

REQUIREMENTS FOR THE MAJOR: 105 credits
(This includes 21 credits of General Education courses: 9 credits of GN courses; 6 credits of GQ courses; 3 credits of GS courses; 3 credits of GWS courses.)

PRESCRIBED COURSES (89 credits)
CHEM 012 GN(3), CHEM 014 GN(1), ED&G 100(3), MATH 140 GQ(4), MATH 141 GQ(4), PHYS 211 GN(4), PHYS 212 GN(4) (Sem: 1-2)
E MCH 011(3), E MCH 012(3), E MCH 013(3), M E 030(3), MATH 230(4), MATH 251(4)[1], PHYS 214 GN(2) (Sem: 3-4)
E E 305(3), E MCH 215(2), E MCH 216(1), ENGL 202C GWS(3), M E 033(3), M E 412(3), NUC E 301(4)[1], NUC E 302(4)[1], NUC E 309(3), NUC E 310W(2), NUC E 450(3)[1] (Sem: 5-6)
NUC E 403(3), NUC E 430(3)[1], NUC E 431W(4), NUC E 451(3) (Sem: 7-8)

ADDITIONAL COURSES (13 credits)
Select 1 credit of First-Year Seminar (Sem: 1-2)
ECON 002 GS(3), ECON 004 GS(3), or ECON 014 GS(3) (Sem: 1-2)
CMPSC 201C GQ(3) or CMPSC 201F GQ(3) (Sem: 3-4)
Select 6 credits in nuclear engineering courses from NUC E 405, NUC E 408, NUC E 409, NUC E 420, NUC E 428, NUC E 444, NUC E 445, NUC E 460, NUC E 470, NUC E 490, or 500-level NUC E courses with approval of advisor (Students may apply 3 credits of ROTC.) (Sem: 7-8)

SUPPORTING COURSES AND RELATED AREAS (3 credits)
Select 3 credits in technical courses from program list of supporting coureses and related areas (Students may apply 3 credits of ROTC.) (Sem: 7-8)

[1] A student enrolled in this major must receive a grade of C or better, as specified in Senate Policy 82-44.

 

Last Revised by the Department: Spring Semester 2002

Blue Sheet Item #: 30-03-101A

Review Date: 11/20/01

Search
CourseInfo

Look up course abbreviations

Course descriptions are stored in LionPATH, the University-wide student information system. Please visit the LionPATH Course Catalog to access current course descriptions. At that point, you will be leaving the University Bulletin website.



Skip Popular Searches
  1. Bachelor of Arts Degree Requirements
  2. General Education: United States Cultures and International Cultures
  3. Course Index
  4. Graduate Degree Programs Bulletin
  5. General Education: Arts
  6. General Education: Humanities
  7. General Education: Health and Physical Activity
  8. General Education: Natural Sciences
  9. General Education: Social and Behavioral Sciences
  10. General Education: Writing/Speaking