INDUSTRIAL ENGINEERING

Graduate Program Head: Janis P. Terpenning
Program Code: IE
Campus(es): University Park (Ph.D., M.S.)
Degrees Conferring
- Doctor of Philosophy (Ph.D.)
- Master of Science (M.S.)
- Dual-Title Ph.D. and M.S. in Industrial Engineering and Operations Research

The Graduate Faculty
- View (https://secure.gradsch.psu.edu/gpms/index.cfm?searchType=fac&prog=IE)

Graduate study and research are conducted in manufacturing process, information engineering operations research-management science, production engineering, process design, systems engineering, human factors, ergonomics, quality engineering, and robotics.

Admission Requirements

Applicants apply for admission to the program via the Graduate School application for admission (http://gradschool.psu.edu/prospective-students/how-to-apply). Requirements listed here are in addition to Graduate Council policies listed under GCAC-300 Admissions (http://gradschool.psu.edu/graduate-education-policies).

Scores from the Graduate Record Examination (GRE) are required for admission. To be admitted into the program, an applicant must have received a baccalaureate degree from a regionally accredited institution. Graduates in engineering, physical sciences, and mathematics who present a 3.00 grade-point average will be considered for admission.

The language of instruction at Penn State is English. English proficiency test scores (TOEFL/IELTS) may be required for international applicants. See GCAC-305 Admission Requirements for International Students (http://gradschool.psu.edu/graduate-education-policies/gcac/gcac-300/gcac-305-admission-requirements-international-students) for more information.

Degree Requirements

Master of Science (M.S.)

Requirements listed here are in addition to Graduate Council policies listed under GCAC-600 Research Degree Requirements. (http://gradschool.psu.edu/graduate-education-policies)

The M.S. degree program is intended for students to gain advanced knowledge for research, analysis, and design in industrial engineering. The M.S. degree is offered with thesis or research paper tracks, both requiring 32 credits. For both tracks, a core curriculum is required that is composed of IE 505 and IE 511, which all the students must satisfy.

The M.S. degree with thesis track requires 24 credits of course work and two credits of IE 590. Out of the 24 credits of coursework, at least 15 must be IE courses, and at least 12 must be at the 500 level. Of the 12 credits at the 500 level, at least nine must be IE courses. A thesis is required, for which six credits of IE 600 or IE 610 must be taken. The thesis must demonstrate comprehensive and in-depth knowledge of a topic in industrial engineering, and it should be suitable for submission for publication in a refereed journal as approved by the committee.

The M.S. degree with non-thesis track requires 27 credits of course work, two credits of IE 590. Out of the 27 credits of coursework, at least 18 must be IE courses, and at least 18 must be at the 500 level. Of the 18 credits at the 500 level, at least fifteen must be IE courses. A scholarly paper is required for the MS degree with non-thesis track for which three credits of IE 596 must be taken. The paper should demonstrate the ability of the student to integrate and apply concepts and techniques learnt in the courses to solve an engineering problem.

The students seeking the Master of Science degree in Industrial Engineering with non-thesis track are expected to start their degree in the Fall semester of every year and complete their degree including all the required course work and three credits of research resulting in a paper and graduate by the end of summer following the second semester. Students who cannot complete their research paper by this summer can graduate after the summer. The plan of study is as follows:

- Fall semester: Twelve credits of course work, one credit of colloquium and one credit of research (IE 596).
- Spring semester: Twelve credits of coursework, one credit of colloquium and one credit of research (IE 596).
- Summer semester: Three credits of coursework and one credit of research (IE 596).

Continuous registration is required for all graduate students until the thesis or paper is approved.

For the M.S. degree, options are available in Human Factors/Ergonomics Engineering, Manufacturing Engineering and Quality Engineering.

Human Factors/Ergonomics Engineering Option

To receive the M.S degree in Industrial Engineering with thesis track and with an Option in Human Factors/Ergonomics Engineering, a student must complete at least 32 credits beyond the bachelor’s degree: 24 credits of course work, 2 credit of colloquium, and 6 credits of research leading to a thesis, as required for the M.S. degree in Industrial Engineering with thesis track.

To receive the M.S degree in Industrial Engineering with non-thesis track and with an Option in Human Factors/Ergonomics Engineering, a student must complete at least 32 credits beyond the bachelor’s degree: 27 credits of course work, 2 credit of colloquium, and 3 credits of research leading to a scholarly paper, as required for the M.S. degree in Industrial Engineering with non-thesis track.

The course credits for the Option in Human Factors/Ergonomics Engineering must include the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 549</td>
<td>Design Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>IE 553</td>
<td>Engineering of Human Work</td>
<td>3</td>
</tr>
<tr>
<td>IE 558</td>
<td>Engineering of Cognitive Work</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Manufacturing Engineering Option

To receive the M.S degree in Industrial Engineering with thesis track and with an Option in Human Factors/Ergonomics Engineering, a student must complete at least 32 credits beyond the bachelor’s degree:
24 credits of course work, 2 credit of colloquium, and 6 credits of
research leading to a thesis, as required for the M.S. degree in Industrial Engineering with thesis track.

To receive the M.S degree in Industrial Engineering with non-thesis track and with an Option in Human Factors/Ergonomics Engineering, a student must complete at least 32 credits beyond the bachelor’s degree: 24 credits of course work, 2 credit of colloquium, and 6 credits of research leading to a thesis, as required for the M.S. degree in Industrial Engineering with thesis track.

The course credits for the Option in Manufacturing Engineering must include the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 528</td>
<td>Metal Cutting Theory</td>
<td>3</td>
</tr>
<tr>
<td>IE 550</td>
<td>Manufacturing Systems</td>
<td>3</td>
</tr>
<tr>
<td>IE 563</td>
<td>Computer-Aided Design for Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>9</td>
</tr>
</tbody>
</table>

Quality Engineering Option

To receive the M.S degree in Industrial Engineering with thesis track and with an Option in Human Factors/Ergonomics Engineering, a student must complete at least 32 credits beyond the bachelor’s degree: 24 credits of course work, 2 credit of colloquium, and 6 credits of research leading to a thesis, as required for the M.S. degree in Industrial Engineering with thesis track.

To receive the M.S degree in Industrial Engineering with non-thesis track and with an Option in Human Factors/Ergonomics Engineering, a student must complete at least 32 credits beyond the bachelor’s degree: 27 credits of course work, 2 credit of colloquium, and 3 credits of research leading to a scholarly paper, as required for the M.S. degree in Industrial Engineering with non-thesis track.

The course credits for the Option in Quality Engineering must include the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 555</td>
<td>Statistical Process Monitoring and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>IE 566</td>
<td>Quality Control</td>
<td>3</td>
</tr>
<tr>
<td>IE 583</td>
<td>Response Surface Methodology and Process Optimization</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>9</td>
</tr>
</tbody>
</table>

Doctor of Philosophy (Ph.D.)

Requirements listed here are in addition to Graduate Council policies listed under GCAC-600 Research Degree Requirements. (http://gradschool.psu.edu/graduate-education-policies)

The Ph.D. program emphasizes scholarly research, and prepares students for research and development careers in industry, government, and academia. Students must pass a written qualifying examination. The Ph.D. is awarded upon completion of a program of advanced study that includes a minimum period of residence, passing the English proficiency and comprehensive examinations, completing a satisfactory dissertation, and passing the final oral examination. The degree requirements consist of 45 credits of course work and four IE 590 credits. Of the 45 credits of required course work, 36 must be prefixed IE, and at least 30 must be at the 500 level. Nine credits must be from outside the Department and must include a six-credit sequence, with at least three credits at the 500 level.

Continuous registration is required for all graduate students until the dissertation is approved.

Dual-Titles

Dual-Title M.S. and Ph.D. in Industrial Engineering and Operations Research

Requirements listed here are in addition to requirements listed in GCAC-208 Dual-Title Graduate Degree Programs (http://gradschool.psu.edu/graduate-education-policies/gcac/gcac-200/gcac-208-dual-title-graduate-degree-programs).

Admission Requirements

Students must apply and be admitted to the graduate program in Industrial Engineering and The Graduate School before they can apply for admission to the dual-title degree program. After admission to their primary program, students must apply for admission to and meet the admissions requirements of the Operations Research dual-title program. Refer to the Admission Requirements section of the Operations Research Bulletin page (http://bulletins.psu.edu/graduate/programs/majors/operations-research). Doctoral students must be admitted into the dual-title degree program in Operations Research prior to taking the qualifying examination in their primary graduate program.

Degree Requirements

To qualify for the dual-title degree, students must satisfy the degree requirements for the degree they are enrolled in Industrial Engineering. In addition, students must complete the degree requirements for the dual-title in Operations Research, listed on the Operations Research Bulletin page (http://bulletins.psu.edu/graduate/programs/majors/operations-research).

The qualifying examination committee for the dual-title Ph.D. degree will be composed of Graduate Faculty from Industrial Engineering and must include at least one Graduate Faculty member from the Operations Research program. Faculty members who hold appointments in both programs’ Graduate Faculty may serve in a combined role. There will be a single qualifying examination, containing elements of both Industrial Engineering and Operations Research. Dual-title graduate degree students may require an additional semester to fulfill requirements for both areas of study and, therefore, the qualifying examination may be delayed one semester beyond the normal period allowable.

In addition to the general Graduate Council requirements for dissertation committees (http://gradschool.psu.edu/graduate-education-policies/gcac/gcac-600/phd-dissertation-committee-formation), the dissertation committee of an Industrial Engineering and Operations Research dual-title Ph.D. student must include at least one member of the Operations Research Graduate Faculty. Faculty members who hold appointments in both programs’ Graduate Faculty may serve in a combined role. If the chair of the dissertation committee is not also a member of the Graduate Faculty in Operations Research, the member of the committee representing Operations Research must be appointed as co-chair. The Operations Research representative on the student’s dissertation committee will develop questions for and participate in the evaluation of the comprehensive examination.

Students in the dual-title program are required to write and orally defend a dissertation on a topic that is approved in advance by their dissertation committee and reflects their original research and education in Industrial Engineering and Operations Research. Upon completion of the doctoral dissertation, the candidate must pass a final oral examination (the dissertation defense) to earn the Ph.D. degree. The dissertation must
be accepted by the dissertation committee, the head of the graduate program, and the Graduate School.

Student Aid

Graduate assistantships available to students in this program and other forms of student aid are described in the Tuition & Funding (http://gradschool.psu.edu/graduate-funding) section of The Graduate School’s website. Students on graduate assistantships must adhere to the course load limits (http://gradschool.psu.edu/graduate-education-policies/gsad/gsad-500/gsad-501-credit-loads-graduate-assistants) set by The Graduate School.

In addition to the fellowships, traineeships, graduate assistantships, and other forms of financial aid described in the Student Aid (http://bulletins.psu.edu/graduate/generalinformation/tuition2) section of the Graduate Bulletin, the following awards typically has been available to graduate students in this program:

Harold & Inge Marcus Graduate Fellowships

Consideration for these fellowships shall be given to all students exhibiting academic excellence who have been admitted to Penn State as candidates for a graduate degree in the Department of Industrial and Manufacturing Engineering, College of Engineering.

Benjamin W. Niebel Manufacturing Fellowship

Consideration for this fellowship shall be given to all students exhibiting academic excellence who have been admitted to Penn State as candidates for a graduate degree in the Department of Industrial and Manufacturing Engineering, College of Engineering.

Courses

Graduate courses carry numbers from 500 to 699 and 800 to 899. Advanced undergraduate courses numbered between 400 and 499 may be used to meet some graduate degree requirements when taken by graduate students. Courses below the 400 level may not. A graduate student may register for or audit these courses in order to make up deficiencies or to fill in gaps in previous education but not to meet requirements for an advanced degree.

Industrial Engineering (IE) Course List (https://bulletins.psu.edu/university-course-descriptions/graduate/ie)

Contact

<table>
<thead>
<tr>
<th>Campus</th>
<th>University Park</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate Program Head</td>
<td>Janis P Terpenny</td>
</tr>
<tr>
<td>Director of Graduate Studies (DGS) or Professor-in-Charge (PIC)</td>
<td>Robert Carl Voigt</td>
</tr>
<tr>
<td>Program Contact</td>
<td>Lisa Kaye Fuoss</td>
</tr>
<tr>
<td></td>
<td>344 Leonhard Building</td>
</tr>
<tr>
<td></td>
<td>University Park PA 16802</td>
</tr>
<tr>
<td></td>
<td>lkf1@psu.edu</td>
</tr>
<tr>
<td></td>
<td>(814) 863-1269</td>
</tr>
<tr>
<td>Program Website</td>
<td>View (http://www.ime.psu.edu)</td>
</tr>
</tbody>
</table>