Graduate Program Head
Nitin Samarth

Program Code
PHYS

Campus(es)
University Park (Ph.D., M.S., M.Ed.)

Degrees Conferred
- Doctor of Philosophy (Ph.D.)
- Master of Science (M.S.)
- Master of Education (M.Ed.)

The Graduate Faculty
View (https://secure.gradsch.psu.edu/gpms/?searchType=fac&prog=PHYS)

Graduate instruction and research opportunities are available in:
- atomic and molecular physics,
- laser physics,
- experimental and theoretical condensed matter and materials physics,
- surface physics,
- low-temperature physics,
- statistical physics,
- acoustics,
- nuclear physics,
- experimental and theoretical particle physics,
- quantum field theory,
- general relativity,
- cosmology and relativistic astrophysics, and
- quantum gravity.

Work in some areas is conducted in cooperation with the Materials Research Institute, the Applied Research Laboratory, and other interdisciplinary research facilities.

Admission Requirements
Applicants apply for admission to the program via the Graduate School application for admission (http://gradschool.psu.edu/prospective-students/how-to-apply/). Requirements listed here are in addition to Graduate Council policies listed under GCAC-300 Admissions Policies (http://gradschool.psu.edu/graduate-education-policies/).

Graduate Record Examination (GRE) scores are not required for admission. Submission is welcome if available.

A bachelor’s degree in physics or an allied field is required for admission to the M.S., and Ph.D. programs. Students with a 2.50 or higher junior/senior grade-point average (on a 4.00 scale) in physics and mathematics will be considered, and the best-qualified applicants will be accepted up to the number of spaces that are available for new students. Exceptions to the minimum 2.50 GPA may be made for students with special backgrounds, abilities, and interests. Exceptions may also be made for applicants for doctoral programs who have completed master’s degrees at other institutions.

Admission and study programs for the M.Ed. degree are handled on an individual basis.

Degree Requirements

Master of Education (M.Ed.)
Requirements listed here are in addition to Graduate Council policies listed under GCAC-700 Professional Degree Policies (http://gradschool.psu.edu/graduate-education-policies/).

At least 18 credits in physics are required, of which up to 6 credits may be for research. Six additional nonresearch science credits (which may be in physics) and a 6-credit minor in a field of professional education also must be included. A thesis or term paper must be submitted and accepted by the department.

Master of Science (M.S.)
Requirements listed here are in addition to Graduate Council policies listed under GCAC-600 Research Degree Policies. (http://gradschool.psu.edu/graduate-education-policies/)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 530</td>
<td>Theoretical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 557</td>
<td>Electrodynamics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 559</td>
<td>Graduate Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 561</td>
<td>Quantum Mechanics I</td>
<td>3-4</td>
</tr>
<tr>
<td>or PHYS 410</td>
<td>Introduction to Quantum Mechanics I</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 11-12

There are two options.
- Thesis option: The thesis must be based on at least 6 credits of PHYS 600 and must conform to Graduate School regulations.
- Nonthesis option: An additional 6 credits of 500-level physics courses beyond the required ones must be taken, and a short paper must be submitted to, and accepted by, the department.

There is no degree examination for either option.

Doctor of Philosophy (Ph.D.)
Requirements listed here are in addition to Graduate Council policies listed under GCAC-600 Research Degree Policies. (http://gradschool.psu.edu/graduate-education-policies/)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 517</td>
<td>Statistical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 525</td>
<td>Methods of Theoretical Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 530</td>
<td>Theoretical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 557</td>
<td>Electrodynamics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 559</td>
<td>Graduate Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 561</td>
<td>Quantum Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 562</td>
<td>Quantum Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td>First-Year Seminar Series</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 20

Courses required beyond these depend on the Ph.D. option. Students take at least four additional 3-credit, 500-level physics courses.

A qualifying examination is given at the end of the first year, a comprehensive examination approximately two years after the qualifying examination, and a final oral examination (the dissertation defense) takes
place after the completion of the dissertation. There is no departmental foreign language requirement, although a reading knowledge of one foreign language may be needed in some areas of research.

Minor

A graduate minor is available in any approved graduate major or dual-title program. The default requirements for a graduate minor are stated in Graduate Council policies listed under GCAC-600 Research Degree Policies (http://gradschool.psu.edu/graduate-education-policies/) and GCAC-700 Professional Degree Policies (http://gradschool.psu.edu/graduate-education-policies/), depending on the type of degree the student is pursuing:

- GCAC-611 Minor - Research Doctorate (https://gradschool.psu.edu/graduate-education-policies/gcac/gcac-600/gcac-611-minor-research-doctorate/)
- GCAC-641 Minor - Research Master’s (https://gradschool.psu.edu/graduate-education-policies/gcac/gcac-600/gcac-641-minor-research-masters/)
- GCAC-709 Minor - Professional Doctorate (https://gradschool.psu.edu/graduate-education-policies/gcac/gcac-700/gcac-709-professional-doctoral-minor/)
- GCAC-741 Minor - Professional Master’s (https://gradschool.psu.edu/graduate-education-policies/gcac/gcac-700/gcac-741-masters-minor-professional/)

Student Aid

Graduate assistantships available to students in this program and other forms of student aid are described in the Tuition & Funding (http://gradschool.psu.edu/graduate-funding/) section of The Graduate School’s website. Students on graduate assistantships must adhere to the course load limits (http://gradschool.psu.edu/graduate-education-policies/gsad/gsad-900/gsad-901-graduate-assistants/) set by The Graduate School.

The following awards typically have been available to graduate students in this program:

Homer F. Braddock Graduate Fellowships
Available to exceptional Ph.D. candidates in several departments of the Eberly College of Science. They carry stipends of $3,500 to $7,500 per year for each of the first three years.

Wheeler P. Davey Memorial Fellowships
Carry stipend of variable amount and are available to a limited number of qualified graduate students in the Eberly College of Science.

David C. Duncan Graduate Fellowships
Available to first- and second-year graduate students in physics and carry a stipend of approximately $2,000 per year for each of the first two years.

Frymoyer Scholarship

W. Donald Miller Graduate Fellowship

David H. Rank Memorial Physics Award

The Nellie and Oscar L. Roberts Fellowships

Available to graduate students majoring in the physical sciences and in biochemistry and molecular biology. Each award is for $4,000 per year for one or two years.

Courses

Graduate courses carry numbers from 500 to 699 and 800 to 899. Advanced undergraduate courses numbered between 400 and 499 may be used to meet some graduate degree requirements when taken by graduate students. Courses below the 400 level may not. A graduate student may register for or audit these courses in order to make up deficiencies or to fill in gaps in previous education but not to meet requirements for an advanced degree.

Physics (PHYS) Course List (https://bulletins.psu.edu/university-course-descriptions/graduate/phys/)

Learning Outcomes

Master of Education (M.Ed.)

1. Graduates shall demonstrate advanced knowledge and understanding in several areas of physics core knowledge, and advanced knowledge of education theory and/or practice.
2. Graduates shall demonstrate, at a level appropriate to a departmental colloquium, (i) knowledge of several outstanding problems or questions in diverse sub-fields of physics, (ii) the experimental, observational, or theoretical origins of these problems, and (iii) the principal efforts proposed or underway to address them.
3. Graduates shall demonstrate the ability to communicate professionally, in written and oral form, physics and education research work and conclusions to expert and non-expert audiences.
4. Graduates shall demonstrate (i) knowledge and understanding of professional standards of ethics and ethical conduct, (ii) the ability to analyze situations to identify the standards that should apply and (iii) describe how they may be appropriately acted upon.
5. Graduates shall have a specialty area within the broad domain of physics, within which they shall demonstrate (i) advanced knowledge and understanding of the primary literature, (ii) the ability to analyze and judge new contributions to the primary literature, (iii) the ability to apply disciplinary knowledge and methodologies to understand and explore complex problems within the specialty area.

Master of Science (M.S.)

1. Graduates shall demonstrate advanced knowledge and understanding in physics core knowledge (statistical mechanics, theoretical mechanics, classical electrodynamics, and quantum physics) and experimental, observational, and theoretical methodologies, that underpin the practice of modern physics.
2. Graduates shall demonstrate, at a level appropriate to a departmental colloquium, (i) knowledge of several outstanding problems or questions in diverse sub-fields of physics, (ii) the experimental, observational, or theoretical origins of these problems, and (iii) the principal efforts proposed or underway to address them.
3. Graduates shall demonstrate the ability to communicate professionally, in written and oral form, research work and conclusions to physics sub-field expert and non-expert audiences.
4. Graduates shall demonstrate (i) knowledge and understanding of professional standards of ethics and ethical conduct, (ii) the ability to analyze situations to identify the standards that should apply and (iii) describe how they may be appropriately acted upon.
5. Graduates shall have a specialty area within the broad domain of physics, within which they shall demonstrate (i) advanced knowledge and understanding of the primary literature, (ii) the ability to analyze and judge new contributions to the primary literature, (iii) the ability to...
apply disciplinary knowledge and methodologies to understand and explore complex problems within the specialty area.

Doctor of Philosophy (Ph.D.)

1. Graduates shall demonstrate advanced knowledge and understanding in physics core knowledge (statistical mechanics, theoretical mechanics, classical electrodynamics, and quantum physics) and experimental, observational, and theoretical methodologies, that underpin the practice of modern physics.

2. Graduates shall demonstrate, at a level appropriate to a departmental colloquium, (i) knowledge of several outstanding problems or questions in diverse sub-fields of physics, (ii) the experimental, observational, or theoretical origins of these problems, and (iii) the principle efforts proposed or underway to address them.

3. Graduates shall demonstrate the ability to communicate professionally, in written and oral form, research work and conclusions to physics sub-field expert and non-expert audiences.

4. Graduates shall demonstrate (i) knowledge and understanding of professional standards of ethics and conduct, (ii) the ability to analyze situations to identify the standards that should apply and (iii) describe how they may be appropriately acted upon.

5. Graduates shall have a specialty area within the broad domain of physics, within which they shall demonstrate (i) advanced knowledge and understanding of the primary literature, (ii) the ability to analyze and judge new contributions to the primary literature, (iii) the ability to pose complex research problem(s) and identify the knowledge and methodologies required to address them, and (iv) the ability to apply that knowledge and those methodologies to create new knowledge and/or develop new experimental techniques that advance (or show the potential to advance) knowledge and understanding within the specialty area.

Contact

<table>
<thead>
<tr>
<th>Campus</th>
<th>University Park</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate Program Head</td>
<td>Nitin Samarth</td>
</tr>
<tr>
<td>Director of Graduate Studies (DGS) or Professor-in-Charge (PIC)</td>
<td>Richard Wallace Robinett</td>
</tr>
<tr>
<td>Program Contact</td>
<td>Julianne R Mortimore</td>
</tr>
<tr>
<td></td>
<td>107 Davey Lab</td>
</tr>
<tr>
<td></td>
<td>University Park PA 16802</td>
</tr>
<tr>
<td></td>
<td>jrm62@psu.edu</td>
</tr>
<tr>
<td></td>
<td>(814) 863-0118</td>
</tr>
<tr>
<td>Program Website</td>
<td>View (https://bulletins.psu.edu/graduate/programs/majors/physics/)</td>
</tr>
</tbody>
</table>