Biology, B.S. (Abington)

Begin Campus: Any Penn State Campus
End Campus: Abington

Program Description
Not all options are available at every campus. Contact the campus you are interested in attending to determine which options are offered.

Biology is the scientific study of life: the diversity and organization of organisms, from single-celled bacteria to multi-cellular plants and animals, including humans. These different levels of biological organization range from the molecules and cells that compose an organism, to the interacting organisms that make up an ecosystem. Hands-on experiences, from designing and conducting lab experiments to making field observations, using many different procedures and instruments, play an important role in gaining biological knowledge. Basic research in biology provides many benefits. Faculty in the Department of Biology at Penn State are exploring ways to cure neurological diseases, to conserve coral populations in tropical oceans, to discover more efficient ways to use plants for food and bioenergy, to develop vaccines for infectious diseases, and investigating many other facets of biology, all with the goal of positively impacting humans and the environment.

You Might Like This Program If...
- You are interested in learning about aspects of the biology of organisms that live on Earth.
- You enjoy a dynamic field of study, with new discoveries being made every day.
- You are interested in hands-on experiences, including courses with integrated laboratories and conducting research with faculty.
- You plan to pursue a career in biology research, education or outreach, or attend professional school in areas including medicine and dentistry.

Entrance Requirements
In order to be eligible for entrance to the Biology major, a student must have:

1. attained at least a 2.00 cumulative grade point average;
2. completed BIOL 110, CHEM 110, MATH 140, and earned a grade of C or better in each of these courses; and
3. completed at least one of the following courses with a grade of C or better: BIOL 220W, BIOL 230W, or BIOL 240W.

Degree Requirements
For the Bachelor of Science degree in Biology, a minimum of 124 credits is required:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education</td>
<td>45</td>
</tr>
<tr>
<td>Requirements for the Major</td>
<td>94</td>
</tr>
</tbody>
</table>

15 of the 45 credits for General Education are included in the Requirements for the Major. This includes: 9 credits of GN courses; 6 credits of GQ courses.

General Education
Connecting career and curiosity, the General Education curriculum provides the opportunity for students to acquire transferable skills necessary to be successful in the future and to thrive while living in interconnected contexts. General Education aids students in developing intellectual curiosity, a strengthened ability to think, and a deeper sense of aesthetic appreciation. These are requirements for all baccalaureate students and are often partially incorporated into the requirements of a program. For additional information, see the General Education Requirements (http://bulletins.psu.edu/undergraduate/general-education/baccalaureate-degree-general-education-program) section of the Bulletin and consult your academic adviser.

The Keystone symbol appears next to the title of any course that is designated as a General Education course. Program requirements may also satisfy General Education requirements and vary for each program.

Foundations (grade of C or better is required.)
- Quantification (GQ): 6 credits
- Writing and Speaking (GWS): 9 credits

Knowledge Domains
- Arts (GA): 6 credits
- Health and Wellness (GHW): 3 credits
- Humanities (GH): 6 credits
- Social and Behavioral Sciences (GS): 6 credits
- Natural Sciences (GN): 9 credits

Integrative Studies (may also complete a Knowledge Domain requirement)
- Inter-Domain or ApprovedLinked Courses: 6 credits

University Degree Requirements
First Year Engagement
All students enrolled in a college or the Division of Undergraduate Studies at University Park, and the World Campus are required to take 1 to 3 credits of the First-Year Seminar, as specified by their college First-Year Engagement Plan.

Other Penn State colleges and campuses may require the First-Year Seminar; colleges and campuses that do not require a First-Year Seminar provide students with a first-year engagement experience.

First-year baccalaureate students entering Penn State should consult their academic adviser for these requirements.

Cultures Requirement
6 credits are required and may satisfy other requirements
- United States Cultures: 3 credits
- International Cultures: 3 credits

Writing Across the Curriculum
3 credits required from the college of graduation and likely prescribed as part of major requirements.

Total Minimum Credits
A minimum of 120 degree credits must be earned for a baccalaureate degree. The requirements for some programs may exceed 120 credits. Students should consult with their college or department adviser for information on specific credit requirements.
Quality of Work
Candidates must complete the degree requirements for their major and earn at least a 2.00 grade-point average for all courses completed within their degree program.

Limitations on Source and Time for Credit Acquisition
The college dean or campus chancellor and program faculty may require up to 24 credits of course work in the major to be taken at the location or in the college or program where the degree is earned. Credit used toward degree programs may need to be earned from a particular source or within time constraints (see Senate Policy 83-80 [http://senate.psu.edu/policies-and-rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/#83-80]). For more information, check the Suggested Academic Plan for your intended program.

Requirements for the Major
To graduate, a student enrolled in the major must earn a grade of C or better in each course designated by the major as a C-required course, as specified by Senate Policy 82-44 [http://senate.psu.edu/policies-and-rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/#82-44].

Common Requirements for the Major (All Options)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescribed Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 111</td>
<td>Experimental Chemistry I</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 113</td>
<td>Experimental Chemistry II</td>
<td>1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>Calculus with Analytic Geometry II</td>
<td>4</td>
</tr>
<tr>
<td>Prescribed Courses: Require a grade of C or better</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 110</td>
<td>Biology: Basic Concepts and Biodiversity</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 220W</td>
<td>Biology: Populations and Communities</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 230W</td>
<td>Biology: Molecules and Cells</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 240W</td>
<td>Biology: Function and Development of Organisms</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 110</td>
<td>Chemical Principles I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 112</td>
<td>Chemical Principles II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Calculus With Analytic Geometry I</td>
<td>4</td>
</tr>
<tr>
<td>Additional Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>8-12</td>
<td></td>
</tr>
<tr>
<td>PHYS 211</td>
<td>General Physics: Mechanics and General Physics:</td>
<td></td>
</tr>
<tr>
<td>& PHYS 212</td>
<td>Electricity and Magnetism</td>
<td></td>
</tr>
<tr>
<td>& PHYS 213</td>
<td>Fluids and Thermal Physics</td>
<td></td>
</tr>
<tr>
<td>& PHYS 214</td>
<td>Wave Motion and Quantum Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS 250</td>
<td>Introductory Physics I</td>
<td></td>
</tr>
<tr>
<td>& PHYS 251</td>
<td>and Introductory Physics II</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>STAT 200</td>
<td>Elementary Statistics</td>
<td></td>
</tr>
<tr>
<td>STAT 240</td>
<td>Introduction to Biometry</td>
<td></td>
</tr>
<tr>
<td>STAT 250</td>
<td>Introduction to Biostatistics</td>
<td></td>
</tr>
</tbody>
</table>

Requirements for the Option

Ecology Option (46-51 credits)
Available at the following campuses: Altoona, University Park

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 463</td>
<td>General Ecology</td>
<td>3</td>
</tr>
<tr>
<td>Additional Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 462</td>
<td>Applied Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>or STAT 464</td>
<td>Applied Nonparametric Statistics</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>6-8</td>
<td></td>
</tr>
<tr>
<td>CHEM 202</td>
<td>Fundamentals of Organic Chemistry I</td>
<td></td>
</tr>
<tr>
<td>& CHEM 203</td>
<td>and Fundamentals of Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 210</td>
<td>Organic Chemistry I</td>
<td></td>
</tr>
<tr>
<td>& CHEM 212 & & CHEM 213</td>
<td>and Organic Chemistry II and Laboratory in Organic Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

Groups
Select a minimum of 15 credits of 400-level biology courses, with at least 6 credits from the Ecology group, 3 credits from the Evolution group, and 3 credits from the Practicum group. A maximum of 3 credits of BIOL 400, 494, 495, 496, and SC 295, 395, 495 may be used to fulfill 15 credits minimum in the 400-level biology course requirements.

Ecology Group:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 406</td>
<td>Symbiosis</td>
<td></td>
</tr>
<tr>
<td>BIOL 412</td>
<td>Ecology of Infectious Diseases</td>
<td></td>
</tr>
<tr>
<td>BIOL 415</td>
<td>Ecotoxicology</td>
<td></td>
</tr>
<tr>
<td>BIOL 417</td>
<td>Invertebrate Zoology</td>
<td></td>
</tr>
<tr>
<td>BIOL 419</td>
<td>Ecological and Environmental Problem Solving</td>
<td></td>
</tr>
<tr>
<td>BIOL/PPEM 425</td>
<td>Biology of Fungi</td>
<td></td>
</tr>
<tr>
<td>BIOL 429</td>
<td>Animal Behavior</td>
<td></td>
</tr>
<tr>
<td>BIOL 435</td>
<td>Ecology of Lakes and Streams</td>
<td></td>
</tr>
<tr>
<td>BIOL 436</td>
<td>Population Ecology and Global Climate Change</td>
<td></td>
</tr>
<tr>
<td>BIOL 438</td>
<td>Theoretical Population Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 444</td>
<td>Field Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 446</td>
<td>Physiological Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 450W</td>
<td>Experimental Field Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 464</td>
<td>Sociobiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 474</td>
<td>Astrobiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 482</td>
<td>Coastal Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 499A</td>
<td>Tropical Field Ecology</td>
<td></td>
</tr>
</tbody>
</table>

Evolution Group:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 405</td>
<td>Molecular Evolution</td>
<td></td>
</tr>
<tr>
<td>BIOL 406</td>
<td>Symbiosis</td>
<td></td>
</tr>
<tr>
<td>BIOL 411</td>
<td>Medical Embryology</td>
<td></td>
</tr>
<tr>
<td>BIOL 414</td>
<td>Taxonomy of Seed Plants</td>
<td></td>
</tr>
<tr>
<td>BIOL 417</td>
<td>Invertebrate Zoology</td>
<td></td>
</tr>
<tr>
<td>BIOL 420</td>
<td>Paleobotany</td>
<td></td>
</tr>
<tr>
<td>BIOL 421</td>
<td>Comparative Anatomy of Vertebrates</td>
<td></td>
</tr>
<tr>
<td>BIOL 422</td>
<td>Advanced Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL/PPEM 425</td>
<td>Biology of Fungi</td>
<td></td>
</tr>
<tr>
<td>BIOL 427</td>
<td>Evolution</td>
<td></td>
</tr>
<tr>
<td>BIOL 428</td>
<td>Population Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL 429</td>
<td>Animal Behavior</td>
<td></td>
</tr>
<tr>
<td>BIOL 432</td>
<td>Developmental Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL 433</td>
<td>Evolution of Vertebrates</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>BIOL 434</td>
<td>Pathobiology of Emerging Infectious Disease</td>
<td></td>
</tr>
<tr>
<td>BIOL 436</td>
<td>Population Ecology and Global Climate Change</td>
<td></td>
</tr>
<tr>
<td>BIOL 438</td>
<td>Theoretical Population Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 439</td>
<td>Practical Bioinformatics</td>
<td></td>
</tr>
<tr>
<td>BIOL 443</td>
<td>Evo-devo: Evolution of Developmental Mechanisms</td>
<td></td>
</tr>
<tr>
<td>BIOL 446</td>
<td>Physiological Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 451</td>
<td>Biology of RNA</td>
<td></td>
</tr>
<tr>
<td>BIOL 460</td>
<td>Human Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL 463</td>
<td>General Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 464</td>
<td>Sociobiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 474</td>
<td>Astrobiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 478</td>
<td>COMPARATIVE NEUROANATOMY</td>
<td></td>
</tr>
</tbody>
</table>

Practicum Group:
- BIOL 400 Teaching in Biology
- BIOL 402W Biological Experimental Design
- BIOL 407 Plant Developmental Anatomy
- BIOL 414 Taxonomy of Seed Plants
- BIOL 417 Invertebrate Zoology
- BIOL 419 Ecological and Environmental Problem Solving
- BIOL 421 Comparative Anatomy of Vertebrates
- BIOL 422 Advanced Genetics
- BIOL/PPEM 425 Biology of Fungi
- BIOL 433 Evolution of Vertebrates
- BIOL 437 Histology
- BIOL 439 Practical Bioinformatics
- BIOL 444 Field Ecology
- BIOL 450W Experimental Field Biology
- BIOL 461 Contemporary Issues in Science and Medicine
- BIOL 473 Laboratory in Mammalian Physiology
- BIOL 475N
- BIOL 478 COMPARATIVE NEUROANATOMY
- BIOL 482 Coastal Biology
- BIOL 494 Research Project
- BIOL 495 Internship in Biology
- BIOL 496 Independent Studies
- BIOL 499A Tropical Field Ecology
- BIOTC 459 Plant Tissue Culture and Biotechnology
- SC 295 Science Co-op Work Experience I
- SC 395 Science Co-op Work Experience II
- SC 495 Science Co-op Work Experience III

Supporting Courses and Related Areas
Select 17-24 credits from department list

General Biology Option (46-51 credits)
Available at the following campuses: Abington, Altoona, Beaver, Berks, Brandywine, Harrisburg, Schuylkill, Scranton, University Park, York

Code	**Title**	**Credits**
Additional Courses
Select one of the following: 6-8

Groups
Select a minimum of 18 credits of 400-level biology courses, with at least 3 credits from each of the following groups (each course may be used to satisfy a requirement in only one group). Moreover, a maximum of 3 credits of BIOL 400, 494, 495, 496 and SC 295, 395, 495 may be used to fulfill the 18 credit minimum in the 400-level biology course requirements.

Plant and Fungi Group:
- BIOL 406 Symbiosis
- BIOL 407 Plant Developmental Anatomy
- BIOL 414 Taxonomy of Seed Plants
- BIOL 420 Paleobotany
- BIOL 424 Seeds of Change: The Uses of Plants
- BIOL/PPEM 425 Biology of Fungi
- BIOL 431 Reproductive Biology
- BIOL 441 Plant Physiology
- BIOL 444 Field Ecology
- BIOL 446 Physiological Ecology
- BIOL 448 Ecology of Plant Reproduction
- BIOL 451 Biology of RNA
- BIOL 482 Coastal Biology
- BIOL 499A Tropical Field Ecology
- PPEM 427 Mycotoxins: Effects of Fungal Toxins on Human and Animal Health

Evolution Group:
- BIOL 405 Molecular Evolution
- BIOL 406 Symbiosis
- BIOL 411 Medical Embryology
- BIOL 414 Taxonomy of Seed Plants
- BIOL 417 Invertebrate Zoology
- BIOL 420 Paleobotany
- BIOL 421 Comparative Anatomy of Vertebrates
- BIOL 422 Advanced Genetics
- BIOL/PPEM 425 Biology of Fungi
- BIOL 427 Evolution
- BIOL 428 Population Genetics
- BIOL 429 Animal Behavior
- BIOL 432 Developmental Genetics
- BIOL 433 Evolution of Vertebrates
- BIOL 434 Pathobiology of Emerging Infectious Disease
- BIOL 436 Population Ecology and Global Climate Change
- BIOL 438 Theoretical Population Ecology
- BIOL 439 Practical Bioinformatics
- BIOL 443 Evo-devo: Evolution of Developmental Mechanisms
- BIOL 446 Physiological Ecology
- BIOL 451 Biology of RNA
- BIOL 460 Human Genetics
- BIOL 463 General Ecology
- BIOL 464 Sociobiology

CHEM 210 Organic Chemistry I & CHEM 212 and Organic Chemistry II & CHEM 213 and Laboratory in Organic Chemistry
Biology, B.S. (Abington)

Genetics and Developmental Biology Group:
- BIOL 474: Astrobiology
- BIOL 478: COMPARATIVE NEUROANATOMY

Genetics and Developmental Biology Group:
- BIOL 404: Cellular Mechanisms in Vertebrate Physiology
- BIOL 405: Molecular Evolution
- BIOL 407: Plant Developmental Anatomy
- BIOL 411: Medical Embryology
- BIOL 413: Cell Signaling and Regulation
- BIOL 416: Biology of Cancer
- BIOL 422: Advanced Genetics
- BIOL 426: Developmental Neurobiology
- BIOL 428: COMPARATIVE NEUROANATOMY
- BIOL 430: Developmental Biology
- BIOL 431: Reproductive Biology
- BIOL 432: Developmental Genetics
- BIOL 439: Practical Bioinformatics
- BIOL 443: Evo-devo: Evolution of Developmental Mechanisms
- BIOL 448: Ecology of Plant Reproduction
- BIOL 451: Biology of RNA
- BIOL 460: Human Genetics
- BIOL 467: Molecular Basis of Neurological Diseases
- MICRB 410: Principles of Immunology

Ecology Group:
- BIOL 406: Symbiosis
- BIOL 412: Ecology of Infectious Diseases
- BIOL 415: Ecotoxicology
- BIOL 417: Invertebrate Zoology
- BIOL 419: Ecological and Environmental Problem Solving
- BIOL/PPEM 425: Biology of Fungi
- BIOL 421: Comparative Anatomy of Vertebrates
- BIOL 422: Advanced Genetics
- BIOL 424: Seeds of Change: The Uses of Plants
- BIOL 426: Developmental Neurobiology
- BIOL 430: Developmental Biology
- BIOL 431: Reproductive Biology
- BIOL 432: Developmental Genetics
- BIOL 433: Evolution of Vertebrates
- BIOL 437: Histology
- BIOL 438: Theoretical Population Ecology
- BIOL 444: Field Ecology
- BIOL 450: Experimental Field Biology
- BIOL 451: Biology of RNA
- BIOL 457: Molecular Basis of Neurological Diseases
- BIOL 469: Neurobiology
- BIOL 470: Functional and Integrative Neuroscience
- BIOL 472: Mammalian Physiology
- BIOL 478: COMPARATIVE NEUROANATOMY
- BIOL 479: General Endocrinology
- BIOL 482: Coastal Biology

Practicum Group:
- BIOL 400: Teaching in Biology
- BIOL 402W: Biological Experimental Design
- BIOL 414: Taxonomy of Seed Plants
- BIOL 417: Invertebrate Zoology
- BIOL 419: Ecological and Environmental Problem Solving
- BIOL 421: Comparative Anatomy of Vertebrates
- BIOL 422: Advanced Genetics
- BIOL/PPEM 425: Biology of Fungi
- BIOL 433: Evolution of Vertebrates
- BIOL 437: Histology
- BIOL 439: Practical Bioinformatics
- BIOL 444: Field Ecology
- BIOL 450W: Experimental Field Biology
- BIOL 461: Contemporary Issues in Science and Medicine
- BIOL 473: Laboratory in Mammalian Physiology
- BIOL 475N: Plant Tissue Culture and Biotechnology
- BIOL 476: Advanced Human Anatomy - cadaver based
- BIOL 478: COMPARATIVE NEUROANATOMY
- BIOL 482: Coastal Biology
- BIOL 494: Research Project
- BIOL 495: Internship in Biology
- BIOL 496: Independent Studies
- BIOL 499A: Tropical Field Ecology
- BIOTC 459: Plant Tissue Culture and Biotechnology
- SC 295: Science Co-op Work Experience I
- SC 395: Science Co-op Work Experience II
- SC 495: Science Co-op Work Experience III

Supporting Courses and Related Areas
Select 20-27 credits from department list

Genetics and Developmental Biology Option (46-51 credits)
Available at the following campuses: Abington, Berks, Harrisburg, University Park, York
Biology, B.S. (Abington)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 322</td>
<td>Genetic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 430</td>
<td>Developmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>BMB 401</td>
<td>General Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BMB 402</td>
<td>General Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 210</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 212</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 213</td>
<td>Laboratory in Organic Chemistry</td>
<td>2</td>
</tr>
</tbody>
</table>

Prescribed Courses

Select 2-5 credits from the following:

- **MATH 220** Matrices
- **MATH 231** Calculus of Several Variables
- **MICRB 201** Introductory Microbiology
- **MICRB 202** Introductory Microbiology Laboratory

Additional Courses

- **Select a minimum of 12 credits of 400-level courses, with at least 6 credits from the Genetics and Developmental Biology group, 3 credits from Evolution, and 3 credits from the Practicum group. A maximum of 3 credits of BIOL 400, 494, 495, 496 and SC 295, 395, 495 may be used to fulfill the 12 credit minimum in the 400-level biology course requirements.**

Genetics and Developmental Biology Group:

- **BIOL 404** Cellular Mechanisms in Vertebrate Physiology
- **BIOL 405** Molecular Evolution
- **BIOL 407** Plant Developmental Anatomy
- **BIOL 411** Medical Embryology
- **BIOL 413** Cell Signaling and Regulation
- **BIOL 416** Biology of Cancer
- **BIOL 422** Advanced Genetics
- **BIOL 426** Developmental Neurobiology
- **BIOL 428** Population Genetics
- **BIOL 431** Reproductive Biology
- **BIOL 432** Developmental Genetics
- **BIOL 439** Practical Bioinformatics
- **BIOL 443** Evo-devo: Evolution of Developmental Mechanisms
- **BIOL 448** Ecology of Plant Reproduction
- **BIOL 451** Biology of RNA
- **BIOL 460** Human Genetics
- **BIOL 467** Molecular Basis of Neurological Diseases
- **BIOL 469** Neurobiology
- **BMB 400** Molecular Biology of the Gene
 or **BMB 450** Microbial/Molecular Genetics
 or **BMB 464** Molecular Medicine
 or **BMB 484** Functional Genomics
 or **HORT 407** Plant Breeding
 or **MICRB 41** Principles of Immunology

Evolution Group:

- **BIOL 405** Molecular Evolution
- **BIOL 406** Symbiosis
- **BIOL 411** Medical Embryology
- **BIOL 414** Taxonomy of Seed Plants
- **BIOL 417** Invertebrate Zoology
- **BIOL 420** Paleobotany
- **BIOL 421** Comparative Anatomy of Vertebrates
- **BIOL 422** Advanced Genetics
- **BIOL/PPEM 425** Biology of Fungi
- **BIOL 427** Evolution
- **BIOL 428** Population Genetics
- **BIOL 429** Animal Behavior
- **BIOL 432** Developmental Genetics
- **BIOL 433** Evolution of Vertebrates
- **BIOL 434** Pathobiology of Emerging Infectious Disease
- **BIOL 436** Population Ecology and Global Climate Change
- **BIOL 438** Theoretical Population Ecology
- **BIOL 439** Practical Bioinformatics
- **BIOL 443** Evo-devo: Evolution of Developmental Mechanisms
- **BIOL 446** Physiological Ecology
- **BIOL 451** Biology of RNA
- **BIOL 460** Human Genetics
- **BIOL 463** General Ecology
- **BIOL 464** Sociobiology
- **BIOL 474** Astrobiology
- **BIOL 478** COMPARATIVE NEUROANATOMY

Practicum Group:

- **BIOL 400** Teaching in Biology
- **BIOL 402W** Biological Experimental Design
- **BIOL 407** Plant Developmental Anatomy
- **BIOL 414** Taxonomy of Seed Plants
- **BIOL 417** Invertebrate Zoology
- **BIOL 419** Ecological and Environmental Problem Solving
- **BIOL 421** Comparative Anatomy of Vertebrates
- **BIOL 422** Advanced Genetics
- **BIOL/PPEM 425** Biology of Fungi
- **BIOL 433** Evolution of Vertebrates
- **BIOL 437** Histology
- **BIOL 439** Practical Bioinformatics
- **BIOL 444** Field Ecology
- **BIOL 450W** Experimental Field Biology
- **BIOL 461** Contemporary Issues in Science and Medicine
- **BIOL 473** Laboratory in Mammalian Physiology
- **BIOL 475N**
- **BIOL 478** COMPARATIVE NEUROANATOMY
- **BIOL 482** Coastal Biology
- **BIOL 494** Research Project
- **BIOL 495** Internship in Biology
- **BIOL 496** Independent Studies
- **BIOL 499A** Tropical Field Ecology
- **SC 295** Science Co-op Work Experience I
- **SC 395** Science Co-op Work Experience II
- **SC 495** Science Co-op Work Experience III

Supporting Courses and Related Areas

- **Select 9-17 credits from department list**

- **9-17**
Neuroscience Option (46-51 credits)
Available at the following campuses: University Park

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 469</td>
<td>Neurobiology</td>
<td>3</td>
</tr>
<tr>
<td>BMB 401</td>
<td>General Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BMB 402</td>
<td>General Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 210</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 212</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 213</td>
<td>Laboratory in Organic Chemistry</td>
<td>2</td>
</tr>
</tbody>
</table>

Additional Courses
Select 3 credits from the following: 3
- BIOL 426 Developmental Neurobiology
- BIOL 470 Functional and Integrative Neuroscience
- BIOL 478 COMPARATIVE NEUROANATOMY

Groups
Select a minimum of 12 credits of 400-level biology courses, with at least 6 credits from the Neuroscience group, 3 credits from the Evolution group, and 3 credits from the Practicum group. A maximum of 3 credits of BIOL 400, 494, 495, 496 and SC 295, 395, 495 may be used to fulfill the 12 credit minimum in the 400-level biology course requirements.

Neuroscience Group:
- BIOL 404 Cellular Mechanisms in Vertebrate Physiology
- BIOL 413 Cell Signaling and Regulation
- BIOL 424 Seeds of Change: The Uses of Plants
- BIOL 426 Developmental Neurobiology
- BIOL 430 Developmental Biology
- BIOL 437 Histology
- BIOL 467 Molecular Basis of Neurological Diseases
- BIOL 470 Functional and Integrative Neuroscience
- BIOL 472 Mammalian Physiology
- BIOL 473 Laboratory in Mammalian Physiology
- BIOL 478 COMPARATIVE NEUROANATOMY
- BIOL 479 General Endocrinology
- BBH 432 Biobehavioral Aspects of Stress
 or BBH 451 Pharmacological Influences on Health
 or BBH 468 Neuroanatomical Bases for Disorders of Behavior and Health
 or HDFS 468
 or NUTR 445 Energy and Macronutrient Metabolism
 or PSYCH 45 Learning and Memory
 or PSYCH 46 Physiological Psychology
 or PSYCH 47 Clinical Neuropsychology

Evolution Group:
- BIOL 405 Molecular Evolution
- BIOL 406 Symbiosis
- BIOL 411 Medical Embryology
- BIOL 414 Taxonomy of Seed Plants
- BIOL 417 Invertebrate Zoology
- BIOL 420 Paleobotany
- BIOL 421 Comparative Anatomy of Vertebrates
- BIOL 422 Advanced Genetics

Plant Biology Option (46-51 credits)
Available at the following campuses: University Park

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL/PPEM 425</td>
<td>Biology of Fungi</td>
<td></td>
</tr>
<tr>
<td>BIOL 427</td>
<td>Evolution</td>
<td></td>
</tr>
<tr>
<td>BIOL 428</td>
<td>Population Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL 429</td>
<td>Animal Behavior</td>
<td></td>
</tr>
<tr>
<td>BIOL 432</td>
<td>Developmental Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL 433</td>
<td>Evolution of Vertebrates</td>
<td></td>
</tr>
<tr>
<td>BIOL 434</td>
<td>Pathobiology of Emerging Infectious Disease</td>
<td></td>
</tr>
<tr>
<td>BIOL 436</td>
<td>Population Ecology and Global Climate Change</td>
<td></td>
</tr>
<tr>
<td>BIOL 438</td>
<td>Theoretical Population Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 439</td>
<td>Practical Bioinformatics</td>
<td></td>
</tr>
<tr>
<td>BIOL 443</td>
<td>Evo-devo: Evolution of Developmental Mechanisms</td>
<td></td>
</tr>
<tr>
<td>BIOL 446</td>
<td>Physiological Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 451</td>
<td>Biology of RNA</td>
<td></td>
</tr>
<tr>
<td>BIOL 460</td>
<td>Human Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL 463</td>
<td>General Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 464</td>
<td>Sociobiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 474</td>
<td>Astrobiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 478</td>
<td>COMPARATIVE NEUROANATOMY</td>
<td></td>
</tr>
<tr>
<td>BIOL/PPEM 425</td>
<td>Biology of Fungi</td>
<td></td>
</tr>
<tr>
<td>BIOL 400</td>
<td>Teaching in Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 402W</td>
<td>Biological Experimental Design</td>
<td></td>
</tr>
<tr>
<td>BIOL 407</td>
<td>Plant Developmental Anatomy</td>
<td></td>
</tr>
<tr>
<td>BIOL 414</td>
<td>Taxonomy of Seed Plants</td>
<td></td>
</tr>
<tr>
<td>BIOL 417</td>
<td>Invertebrate Zoology</td>
<td></td>
</tr>
<tr>
<td>BIOL 419</td>
<td>Ecological and Environmental Problem Solving</td>
<td></td>
</tr>
<tr>
<td>BIOL 421</td>
<td>Comparative Anatomy of Vertebrates</td>
<td></td>
</tr>
<tr>
<td>BIOL 422</td>
<td>Advanced Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL/PPEM 425</td>
<td>Biology of Fungi</td>
<td></td>
</tr>
<tr>
<td>BIOL 433</td>
<td>Evolution of Vertebrates</td>
<td></td>
</tr>
<tr>
<td>BIOL 437</td>
<td>Histology</td>
<td></td>
</tr>
<tr>
<td>BIOL 439</td>
<td>Practical Bioinformatics</td>
<td></td>
</tr>
<tr>
<td>BIOL 444</td>
<td>Field Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 450W</td>
<td>Experimental Field Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 461</td>
<td>Contemporary Issues in Science and Medicine</td>
<td></td>
</tr>
<tr>
<td>BIOL 473</td>
<td>Laboratory in Mammalian Physiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 475N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 478</td>
<td>COMPARATIVE NEUROANATOMY</td>
<td></td>
</tr>
<tr>
<td>BIOL 482</td>
<td>Coastal Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 494</td>
<td>Research Project</td>
<td></td>
</tr>
<tr>
<td>BIOL 495</td>
<td>Internship in Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 496</td>
<td>Independent Studies</td>
<td></td>
</tr>
<tr>
<td>BIOL 499A</td>
<td>Tropical Field Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOTC 459</td>
<td>Plant Tissue Culture and Biotechnology</td>
<td></td>
</tr>
<tr>
<td>SC 295</td>
<td>Science Co-op Work Experience I</td>
<td></td>
</tr>
<tr>
<td>SC 395</td>
<td>Science Co-op Work Experience II</td>
<td></td>
</tr>
<tr>
<td>SC 495</td>
<td>Science Co-op Work Experience III</td>
<td></td>
</tr>
</tbody>
</table>

Supporting Courses and Related Areas
Select 14-19 credits from department areas 14-19
Prescribed Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 407</td>
<td>Plant Developmental Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 441</td>
<td>Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BMB 401</td>
<td>General Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BMB 402</td>
<td>General Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 210</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 212</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 213</td>
<td>Laboratory in Organic Chemistry</td>
<td>2</td>
</tr>
</tbody>
</table>

Additional Courses

Groups

Select a minimum of 12 credits of 400-level biology courses, with at least 6 credits from the Plant and Fungi group, 3 credits from the Evolution group, and 3 credits from the Practicum group. A maximum of 3 credits of BIOL 400, 494, 495, 496 and SC 295, 395, 495 may be used to fulfill the 12 credit minimum in the 400-level biology course requirements.

Plant and Fungi Group:
- BIOL 406 Symbiosis
- BIOL 414 Taxonomy of Seed Plants
- BIOL 420 Paleobotany
- BIOL 424 Seeds of Change: The Uses of Plants
- BIOL/PPEM 425 Biology of Fungi
- BIOL 431 Reproductive Biology
- BIOL 444 Field Ecology
- BIOL 446 Physiological Ecology
- BIOL 448 Ecology of Plant Reproduction
- BIOL 451 Biology of RNA
- BIOL 482 Coastal Biology
- BIOL 499A Tropical Field Ecology

Evolution Group:
- BIOL 405 Molecular Evolution
- BIOL 406 Symbiosis
- BIOL 411 Medical Embryology
- BIOL 414 Taxonomy of Seed Plants
- BIOL 417 Invertebrate Zoology
- BIOL 420 Paleobotany
- BIOL 421 Comparative Anatomy of Vertebrates
- BIOL 422 Advanced Genetics
- BIOL/PPEM 425 Biology of Fungi
- BIOL 427 Evolution
- BIOL 428 Population Genetics
- BIOL 429 Animal Behavior
- BIOL 432 Developmental Genetics
- BIOL 433 Evolution of Vertebrates
- BIOL 434 Pathobiology of Emerging Infectious Disease
- BIOL 436 Population Ecology and Global Climate Change
- BIOL 438 Theoretical Population Ecology
- BIOL 439 Practical Bioinformatics
- BIOL 443 Evo-devo: Evolution of Developmental Mechanisms
- BIOL 446 Physiological Ecology

Biology of RNA:
- BIOL 451

Human Genetics:
- BIOL 460

General Ecology:
- BIOL 463

Sociobiology:
- BIOL 464

Astrobiology:
- BIOL 474

COMPARATIVE NEUROANATOMY:
- BIOL 478

Teaching in Biology:
- BIOL 400

Biological Experimental Design:
- BIOL 402W

Plant Developmental Anatomy:
- BIOL 407

Taxonomy of Seed Plants:
- BIOL 414

Invertebrate Zoology:
- BIOL 417

Ecological and Environmental Problem Solving:
- BIOL 419

Comparative Anatomy of Vertebrates:
- BIOL 421

Advanced Genetics:
- BIOL 422

Biology of Fungi:
- BIOL/PPEM 425

Evolution of Vertebrates:
- BIOL 433

Histology:
- BIOL 437

Practical Bioinformatics:
- BIOL 439

Field Ecology:
- BIOL 444

Experimental Field Biology:
- BIOL 450W

Contemporary Issues in Science and Medicine:
- BIOL 461

Laboratory in Mammalian Physiology:
- BIOL 473

COMPARATIVE NEUROANATOMY:
- BIOL 478

Coastal Biology:
- BIOL 482

Research Project:
- BIOL 494

Internship in Biology:
- BIOL 495

Independent Studies:
- BIOL 496

Tropical Field Ecology:
- BIOL 499A

Plant Tissue Culture and Biotechnology:
- BIOTC 459

Science Co-op Work Experience I:
- SC 295

Science Co-op Work Experience II:
- SC 395

Science Co-op Work Experience III:
- SC 495

Supporting Courses and Related Areas

Select 14-19 credits from department list

Vertebrate Physiology Option (46-51 credits)

Available at the following campuses: Abington, Altoona, Brandywine, University Park

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 472</td>
<td>Mammalian Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 473</td>
<td>Laboratory in Mammalian Physiology</td>
<td>2</td>
</tr>
<tr>
<td>BMB 401</td>
<td>General Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BMB 402</td>
<td>General Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 210</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 212</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 213</td>
<td>Laboratory in Organic Chemistry</td>
<td>2</td>
</tr>
</tbody>
</table>

Additional Courses

Groups

Select 14-19 credits from department list
Select a minimum of 12 credits of 400-level courses, with at least 6 credits from the Physiology group, 3 credits from the Evolution group, and 3 credits from the Practicum group. A maximum of 3 credits of BIOL 400, 494, 495, 496 and SC 295, 395, 495 may be used to fulfill the 12 credit minimum in the 400-level biology course requirements.

Physiology Group:
- BIOL 404 Cellular Mechanisms in Vertebrate Physiology
- BIOL 406 Symbiosis
- BIOL 409 Biology of Aging
- BIOL 411 Medical Embryology
- BIOL 412 Ecology of Infectious Diseases
- BIOL 413 Cell Signaling and Regulation
- BIOL 415 Ecotoxicology
- BIOL 416 Biology of Cancer
- BIOL 421 Comparative Anatomy of Vertebrates
- BIOL 424 Seeds of Change: The Uses of Plants
- BIOL 426 Developmental Neurobiology
- BIOL 430 Developmental Biology
- BIOL 431 Reproductive Biology
- BIOL 432 Developmental Genetics
- BIOL 437 Histology
- BIOL 443 Evo-devo: Evolution of Developmental Mechanisms
- BIOL 446 Physiological Ecology

Evolution Group:
- BIOL 405 Molecular Evolution
- BIOL 406 Symbiosis
- BIOL 411 Medical Embryology
- BIOL 414 Taxonomy of Seed Plants
- BIOL 417 Invertebrate Zoology
- BIOL 420 Paleobotany
- BIOL 421 Comparative Anatomy of Vertebrates
- BIOL 422 Advanced Genetics

Supporting Courses and Related Areas
Select 15-20 credits from department list

Program Learning Outcomes

1. **KEY LITERACIES:** describe how heritable changes can lead to differences in populations over time that might result in speciation; trace energy/matter transformation, storage, and mobilization; explain how information is exchanged and stored; recognize how changes in biological structures can have varying effects on function;
and/or describe the interactions and interconnections among systems across biological scales and over evolutionary time scales

2. **PROCESS OF SCIENCE:** apply the elements of the process of science such as posing questions, generating novel hypotheses based on the scientific literature; developing appropriate technical skills for research; designing/conducting experiments to test hypotheses in laboratory and/or field settings; summarizing/interpreting data; integrating/evaluating findings in the broader scientific field to construct new knowledge; and/or participating in the peer review/revision process

3. **SCIENTIFIC EVIDENCE EVALUATION:** discriminate among scientific claims presented in a variety of sources based on the strength of evidence; find appropriate published scientific literature; and/or analyze and critically evaluate data/conclusions from the scientific peer-reviewed literature

4. **QUANTITATIVE REASONING AND DATA SCIENCE:** apply basic quantitative competencies such as algebra, probability, statistics, unit conversions, and fundamental biological equations; organize, summarize, and interpret quantitative data; use modeling/simulation to approach problems from across various scales; and/or find and analyze large databases using statistical methods and/or other approaches

5. **INTERDISCIPLINARY THINKING:** integrate knowledge among biological subfields and between biology and other disciplines

6. **COLLABORATION AND COMMUNICATION:** engage with diverse communities and leverage the skills in the community to pose and solve biological questions; demonstrate the ability to work in teams to solve biological problems; and/or communicate in a variety of formal and informal ways in the discussion of biological research

7. **SCIENCE AND SOCIETY:** explore the impacts of scientific research on society and the environment and how society influences/rely on research to inform decision-making; evaluate the ethical implications of biological research; recognize ethical issues in a variety of settings; and/or describe how different perspectives and the resulting alternative approaches might be evaluated using ethical principles to identify a solution to an issue

8. **PROFESSIONAL EXPERIENCES:** communicate in a professional manner and learn/use professional behaviors in all aspects of college and career building activities, including participation in opportunities such as research, internships, cooperative education, teaching and tutoring, study abroad, and/or volunteer work

Academic Advising

The objectives of the university’s academic advising program are to help advisees identify and achieve their academic goals, to promote their intellectual discovery, and to encourage students to take advantage of both in-and out-of class educational opportunities in order that they become self-directed learners and decision makers.

Both advisers and advisees share responsibility for making the advising relationship succeed. By encouraging their advisees to become engaged in their education, to meet their educational goals, and to develop the habit of learning, advisers assume a significant educational role. The advisee’s unit of enrollment will provide each advisee with a primary academic adviser, the information needed to plan the chosen program of study, and referrals to other specialized resources.

READ SENATE POLICY 32-00: ADVISING POLICY (http://senate.psu.edu/policies-and-rules-for-undergraduate-students/32-00-advising-policy)

Abington

Eric Ingersoll
Program Chair
1600 Woodland Road
Abington, PA 19001
215-881-7492
epi1@psu.edu

Altoona

Laura Palmer
Associate Professor of Biology
Hawthorn Building 109
3000 Ivyside Park
Altoona, PA 16601
814-949-5205
lkp3@psu.edu

Beaver

Cassandra Miller-Butterworth
Associate Professor of Biology
100 University Drive
Monaca, PA 15061
724-773-3527
cmm48@psu.edu

Berks

Maureen Dunbar
Program Coordinator, Associate Professor
Luerssen 101H
Reading, PA 19610
640-396-6328
med18@psu.edu

Brandywine

Mark Boudreau
Biology Coordinator
25 Yearsley Mill Rd
Media, PA 19063
610-892-1268
mab90@psu.edu

Harrisburg

Richard C. Ciocci, Ph.D., P.E.
Interim Program Chair
Olmsted Building, W239
Middletown, PA 17057
717-948-6095
rcc102@psu.edu

Schuylkill

Lucas Redmond
Program Coordinator, Biology
C-001 200 University Drive
Schuylkill Haven, PA 17972
570-385-6167
ljr5322@psu.edu

Scranton

David Byman
Assistant Professor
Dawson 216
Dunmore, PA 18512
570-963-2586
dxb14@psu.edu

University Park

Barbara DeHart
Director, Undergraduate Biology Advising
227 Ritenour Building
University Park, PA 16802
814-865-2329
psubioadvising@psu.edu

York

Anne Vardo-Zalik
Associate Professor of Biology
1 Elias Science Building
York, PA 17403
717-718-6705
amv12@psu.edu

Suggested Academic Plan

The suggested academic plan(s) listed on this page are the plan(s) that are in effect during the 2019-20 academic year. To access previous years' suggested academic plans, please visit the archive (http://bulletins.psu.edu/undergraduate/archive) to view the appropriate Undergraduate Bulletin edition (Note: the archive only contains suggested academic plans beginning with the 2018-19 edition of the Undergraduate Bulletin).

General Biology Option at Abington Campus

The course series listed below provides only one of the many possible ways to move through this curriculum. The University may make changes in policies, procedures, educational offerings, and requirements at any time. This plan should be used in conjunction with your degree audit (accessible in LionPATH as either an Academic Requirements or What If report). Please consult with a Penn State academic adviser on a regular basis to develop and refine an academic plan that is appropriate for you.

First Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 15 or 30 (GWS)</td>
<td>3</td>
<td>BIOL 240W (GN)*</td>
</tr>
<tr>
<td>MATH 140 or 140B (GQ)**</td>
<td>4</td>
<td>MATH 141 or 141B (GQ)†</td>
</tr>
<tr>
<td>BIOL 110 (GN)**</td>
<td>4</td>
<td>CHEM 112 (GN)**</td>
</tr>
<tr>
<td>CHEM 110 (GN)**</td>
<td>3</td>
<td>CHEM 113 (GN)</td>
</tr>
<tr>
<td>CHEM 111 (GN)**</td>
<td>1</td>
<td>General Education Course</td>
</tr>
<tr>
<td>General Education Health and Wellness</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>15</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 230W (GN)*</td>
<td>4</td>
<td>STAT 200 or 250 (GQ)</td>
</tr>
<tr>
<td>BIOL 220W (GN)*</td>
<td>4</td>
<td>CHEM 212</td>
</tr>
<tr>
<td>CHEM 210</td>
<td>3</td>
<td>CHEM 213</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 400-Level Group I</td>
<td>3</td>
<td>BIOL 400-Level Group II</td>
</tr>
<tr>
<td>PHYS 250 (GN)</td>
<td>4</td>
<td>PHYS 251 (GN)</td>
</tr>
<tr>
<td>CAS 100A or 100B (GWS)</td>
<td>3</td>
<td>General Education Health and Wellness</td>
</tr>
<tr>
<td>General Education Course</td>
<td>3</td>
<td>ENGL 202C (GWS)</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>Elective</td>
</tr>
<tr>
<td>Total Credits</td>
<td>17</td>
<td>17-18</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 400-Level Group III</td>
<td>3</td>
<td>BIOL 400-Level Group V</td>
</tr>
<tr>
<td>BIOL 400-Level Group IV</td>
<td>3</td>
<td>BIOL 400-Level Group VI</td>
</tr>
<tr>
<td>General Education Course</td>
<td>3</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>Elective</td>
</tr>
<tr>
<td>Total Credits</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credits 126-127

* Course requires a grade of C or better for the major
† Course requires a grade of C or better for General Education
Course is an Entrance to Major requirement
‡ Course satisfies General Education and degree requirement

University Requirements and General Education Notes:

US and IL are abbreviations used to designate courses that satisfy University Requirements (United States and International Cultures). W, M, X, and Y are the suffixes at the end of a course number used to designate courses that satisfy University Writing Across the Curriculum requirement. GWS, GQ, GH, and GS are abbreviations used to identify General Education program courses. General Education includes Foundations (GWS and GQ) and Knowledge Domains (GH, GA, GH, GS, and Integrative Studies). Foundations courses (GWS and GQ) require a grade of ‘C’ or better.

Integrative Studies courses are required for the General Education program. N is the suffix at the end of a course number used to designate an Inter-Domain course and Z is the suffix at the end of a course number used to designate a Linked course.

Course Lists

GROUP I - PLANTS AND FUNGI

- BIOL 406 Symbiosis (3 cr.)
- BIOL 441 Plant Physiology (3 cr.)
- BIOL 443 Evo-devo: Evolution of Developmental Mechanisms (3 cr.)
- BIOL 482 Coastal Biology (3 cr.)

GROUP II - EVOLUTIONARY BIOLOGY
Biology, B.S. (Abington)

BIOL 406 Symbiosis (3 cr.)
BIOL 427 Evolution (3 cr.)
BIOL 429 Animal Behavior (3 cr.)
BIOL 433 Evolution of Vertebrates (3 cr.)
BIOL 443 Evo-devo: Evolution of Developmental Mechanisms (3 cr.)
BIOL 460 Human Genetics (3 cr.)

GROUP III - GENETICS
BIOL 416 Biology of Cancer (3 cr.)
BIOL 422 Advanced Genetics (3 cr.)
BIOL 430 Developmental Biology (3 cr.)
BIOL 443 Evo-devo: Evolution of Developmental Mechanisms (3 cr.)
BIOL 460 Human Genetics (3 cr.)
MICRB 410 Principles of Immunology (3 cr.)
MICRB 415 General Virology: Bacterial and Animal Viruses (3 cr.)

GROUP IV - ECOLOGY
BIOL 406 Symbiosis (3 cr.)
BIOL 429 Animal Behavior (3 cr.)
BIOL 436 Population Ecology and Global Climate Change (3 cr.)
BIOL 482 Coastal Biology (3 cr.)

GROUP V - ANIMAL PHYSIOLOGY
BIOL 406 Symbiosis (3 cr.)
BIOL 409 Biology of Aging (3 cr.)
BIOL 416 Biology of Cancer (3 cr.)
BIOL 430 Developmental Biology (3 cr.)
BIOL 437 Histology (4 cr.)
BIOL 443 Evo-devo: Evolution of Developmental Mechanisms (3 cr.)
BIOL 460 Human Genetics (3 cr.)
BIOL 469 Neurobiology (3 cr.)
BIOL 472 Mammalian Physiology (3 cr.)
BIOL 479 General Endocrinology (3 cr.)

GROUP VI - PRACTICUM
BIOL 402 (cr.)
BIOL 437 Histology (4 cr.)
BIOL 461 Contemporary Issues in Science and Medicine (3 cr.)
BIOL 473 Laboratory in Mammalian Physiology (2 cr.)

Disallowed Courses
Students may select free elective courses from nearly the entire range of the University's offerings. However, the following courses may NOT be used to satisfy degree requirements in the Biology major, regardless of option, not even as free electives.

ASTRO 001**, 010**, 011**, 120**, 140**
BIOL 011**, 012**
BISC 001, 002, 003**, 004**
BMB 001**
CHEM 001, 002, 006, 101
CMPS 001, 100, 110
ENGL 004, 005
LL ED 005, 010
MATH 001, 002, 003, 004, 017, 018, 021, 022, 026, 030, 035, 036, 040, 041, 081, 082, 083, 110, 111, 200

MICRB 106, 107, 120, 121A, 121B, 150 151A, 151C, 151D, 151E, 151F, 151W
PHYS 001, 150, 151
CAS 004, 126

STAT 100

In addition, the following types of courses may NOT be used to satisfy degree requirements in the Biology major:

- Courses which are remedial in nature or which focus on reading improvement or study skills. NOTE: Only 3 credits of CHEM 017 and only 4 credits of MATH 140A may be used to satisfy degree requirements.
- Courses which substantially duplicate the subject matter covered in other completed courses taught at a comparable level.
- No more than 6 credits of ROTC and 12 credits of Independent Study (296, 496) may be used to satisfy degree requirements. Unless special permission is granted, Independent Study credit may only be used in the "Free Electives" category.
- No more than 5 credits of KINES may be used to satisfy degree requirements.
- ** On rare occasions, with adequate justification, a student may be permitted to use one or more of these courses to satisfy degree requirements. A petition must be submitted to request such an exception and will be considered on a case-by-case basis.

Genetics and Developmental Biology Option at Abington Campus

The course series listed below provides only one of the many possible ways to move through this curriculum. The University may make changes in policies, procedures, educational offerings, and requirements at any time. This plan should be used in conjunction with your degree audit (accessible in LionPATH as either an Academic Requirements or What If report). Please consult with a Penn State academic adviser on a regular basis to develop and refine an academic plan that is appropriate for you.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 15 or 30 (GWS)</td>
<td>3</td>
<td>BIOL 240W (GN)*#</td>
<td>4</td>
</tr>
<tr>
<td>MATH 140 or 140B (GQ)*#</td>
<td>3-4</td>
<td>4 MATH 141 or 141B (GQ)</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 110 (GN)*#</td>
<td>3</td>
<td>CHEM 112 (GN)*#</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 110 (GN)*#</td>
<td>3</td>
<td>CHEM 113 (GN)</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 111 (GN)*</td>
<td>1</td>
<td>1 General Education Course</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General Education Health and Wellness</td>
<td>1.5</td>
</tr>
</tbody>
</table>

15 16.5

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 230W (GN)*#</td>
<td>4</td>
<td>STAT 200 or 250 (GQ)</td>
<td>3-4</td>
</tr>
<tr>
<td>BIOL 220W (GN)*</td>
<td>4</td>
<td>CHEM 212</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 210</td>
<td>3</td>
<td>CHEM 213</td>
<td>2</td>
</tr>
<tr>
<td>General Education Course</td>
<td>3</td>
<td>MICRB 201</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>MICRB 202</td>
<td>2</td>
</tr>
</tbody>
</table>
Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 400-Level Group I Course</td>
<td></td>
</tr>
<tr>
<td>BIOL 430 (or BIOL 400-Level Group II Course)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 250 (GN)</td>
<td></td>
</tr>
<tr>
<td>PHYS 251 (GN)</td>
<td>4</td>
</tr>
<tr>
<td>CAS 100A or 100B (GWS)</td>
<td></td>
</tr>
<tr>
<td>General Education Health and Wellness</td>
<td>1.5</td>
</tr>
<tr>
<td>General Education Course</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 202C (GWS)</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 422 (or BIOL 400-Level Group I Course)</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 16

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMB 401</td>
<td></td>
</tr>
<tr>
<td>BIOL 400-Level Group III Course</td>
<td></td>
</tr>
<tr>
<td>BIOL 430 (or BIOL 400-Level Group II Course)</td>
<td>3</td>
</tr>
<tr>
<td>General Education Course</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMB 442 Laboratory in Proteins, Nucleic Acids, and Molecular Cloning (3 cr.)</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 15

- *Course requires a grade of C or better for the major
- †Course requires a grade of C or better for General Education
- #Course is an Entrance to Major requirement
- ‡Course satisfies General Education and degree requirement

Course Lists

GROUP I - CHOOSE 6 CREDITS FROM THE FOLLOWING COURSES:

- BMB 400 Molecular Biology of the Gene (2-3 cr.)
- BIOL 416 Biology of Cancer (3 cr.)
- BIOL 427 Evolution (3 cr.)
- BIOL 437 Histology (4 cr.)
- BIOL 443 Evo-devo: Evolution of Developmental Mechanisms (3 cr.)
- BIOL 460 Human Genetics (3 cr.)
- BIOL 469 Neurobiology (3 cr.)

GROUP II - CHOOSE 3 CREDITS FROM THE FOLLOWING COURSES:

- BIOL 406 Symbiosis (3 cr.)
- BIOL 427 Evolution (3 cr.)
- BIOL 429 Animal Behavior (3 cr.)
- BIOL 443 Evo-devo: Evolution of Developmental Mechanisms (3 cr.)
- BIOL 460 Human Genetics (3 cr.)
- MICRB 415 General Virology: Bacterial and Animal Viruses (3 cr.)

GROUP III - CHOOSE 3 CREDITS FROM THE FOLLOWING COURSES:

- BIOL 402 (cr.)
- BIOL 437 Histology (4 cr.)
- BIOL 473 Laboratory in Mammalian Physiology (2 cr.)
- BIOL 496 Independent Studies
- MICRB 442 Laboratory in Proteins, Nucleic Acids, and Molecular Cloning (3 cr.)

Disallowed Courses

Students may select free elective courses from nearly the entire range of the University’s offerings. However, the following courses may NOT be used to satisfy degree requirements in the Biology major, regardless of option, not even as free electives.

- ASTRO 001, 010, 011, 120, 140
- BIOL 011, 012
- BISC 001, 002, 003, 004
- BMB 001
- CHEM 001, 002, 006, 101
- CMPSC 001, 100, 110
- ENGL 004, 005
- LL ED 005, 010
- MATH 001, 002, 003, 004, 017, 018, 021, 022, 026, 030, 035, 036, 040, 041, 081, 082, 083, 110, 111, 200
- MICRB 106, 107, 120, 121A, 121B, 150 151A, 151C, 151D, 151E, 151F, 151W
- PHYS 001, 100, 151
- CAS 004, 126
- STAT 100

In addition, the following types of courses may NOT be used to satisfy degree requirements in the Biology major:

- Courses which are remedial in nature or which focus on reading improvement or study skills. NOTE: Only 3 credits of CHEM 017 and only 4 credits of MATH 140A may be used to satisfy degree requirements.
- Courses which substantially duplicate the subject matter covered in other completed courses taught at a comparable level.
- No more than 6 credits of ROTC and 12 credits of Independent Study (296, 496) may be used to satisfy degree requirements. Unless
special permission is granted, Independent Study credit may only be used in the "Free Electives" category.

- No more than 5 credits of KINES may be used to satisfy degree requirements.
- ** On rare occasions, with adequate justification, a student may be permitted to use one or more of these courses to satisfy degree requirements. A petition must be submitted to request such an exception and will be considered on a case-by-case basis.

Vertebrate Physiology Option at Abington Campus

The course series listed below provides only one of the many possible ways to move through this curriculum. The University may make changes in policies, procedures, educational offerings, and requirements at any time. This plan should be used in conjunction with your degree audit (accessible in LionPATH as either an Academic Requirements or What If report). Please consult with a Penn State academic adviser on a regular basis to develop and refine an academic plan that is appropriate for you.

<table>
<thead>
<tr>
<th>Course Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP I - CHOOSE 6 CREDITS FROM THE FOLLOWING COURSES:</td>
</tr>
<tr>
<td>BIOL 406 Symbiosis (3 cr.)</td>
</tr>
<tr>
<td>BIOL 409 Biology of Aging (3 cr.)</td>
</tr>
<tr>
<td>BIOL 416 Biology of Cancer (3 cr.)</td>
</tr>
<tr>
<td>BIOL 430 Developmental Biology (3 cr.)</td>
</tr>
<tr>
<td>BIOL 437 Histology (4 cr.)</td>
</tr>
<tr>
<td>BIOL 443 Evo-devo: Evolution of Developmental Mechanisms (3 cr.)</td>
</tr>
<tr>
<td>BIOL 460 Human Genetics (3 cr.)</td>
</tr>
<tr>
<td>BIOL 469 Neurobiology (3 cr.)</td>
</tr>
<tr>
<td>BIOL 479 General Endocrinology (3 cr.)</td>
</tr>
<tr>
<td>MICRB 410 Principles of Immunology (3 cr.)</td>
</tr>
</tbody>
</table>

| **GROUP II** - CHOOSE 3 CREDITS FROM THE FOLLOWING COURSES: |
| BIOL 406 Symbiosis (3 cr.) |
| BIOL 427 Evolution (3 cr.) |
| BIOL 429 Animal Behavior (3 cr.) |
| BIOL 443 Evo-devo: Evolution of Developmental Mechanisms (3 cr.) |
| BIOL 460 Human Genetics (3 cr.) |
| MICRB 415 General Virology: Bacterial and Animal Viruses (3 cr.) |

| **GROUP III** |
| BIOL 473 Laboratory in Mammalian Physiology (2 cr.) |

Disallowed Courses

Students may select free elective courses from nearly the entire range of the University's offerings. However, the following courses may NOT be used to satisfy degree requirements in the Biology major, regardless of option, not even as free electives.

- ASTRO 001**, 010**, 011**, 120**, 140**
- BIOL 011**, 012**
Biology, B.S. (Abington)

BISC 001, 002, 003**, 004**
BMB 001**
CHEM 001, 002, 006, 101
CMPSC 001, 100, 110
ENGL 004, 005
LL ED 005, 010
MATH 001, 002, 003, 004, 017, 018, 021, 022, 026, 030, 035, 036, 040, 041, 081, 082, 083, 110, 111, 200
MICRB 106, 107, 120, 121A, 121B, 150 151A, 151C, 151D, 151E, 151F, 151W
PHYS 001, 150, 151
CAS 004, 126
STAT 100

In addition, the following types of courses may NOT be used to satisfy degree requirements in the Biology major:

- Courses which are remedial in nature or which focus on reading improvement or study skills. NOTE: Only 3 credits of CHEM 017 and only 4 credits of MATH 140A may be used to satisfy degree requirements.

- Courses which substantially duplicate the subject matter covered in other completed courses taught at a comparable level.

- No more than 6 credits of ROTC and 12 credits of Independent Study (296, 496) may be used to satisfy degree requirements. Unless special permission is granted, Independent Study credit may only be used in the “Free Electives” category.

- No more than 5 credits of KINES may be used to satisfy degree requirements.

- ** On rare occasions, with adequate justification, a student may be permitted to use one or more of these courses to satisfy degree requirements. A petition must be submitted to request such an exception and will be considered on a case-by-case basis.

Career Paths

A Biology BS degree provides an excellent foundation and the skills required for a wide range of technical careers. While many majors use a Biology degree to prepare for entrance into health professional schools, others follow career paths in research, education, and business. Students also pursue graduate study at universities both across the U.S. and internationally.

MORE INFORMATION ABOUT POTENTIAL CAREER OPTIONS FOR GRADUATES OF THE BIOLOGY PROGRAM (http://bio.psu.edu/undergraduate-portal/after-graduation)

MORE INFORMATION ABOUT OPPORTUNITIES FOR GRADUATE STUDIES (http://bio.psu.edu/graduate-portal)

Contact

Abington
DIVISION OF SCIENCE AND ENGINEERING
1600 Woodland Road
Abington, PA 19001
215-881-7300
epi1@psu.edu
http://abington.psu.edu/biology

Altoona
DIVISION OF MATHEMATICS AND NATURAL SCIENCES
Hawthorn Building 109
3000 Ivyside Park
Altoona, PA 16601
814-949-5205
lkp3@psu.edu
http://altoona.psu.edu/academics/bachelors-degrees/biology/request-information

Beaver
100 University Drive
Monaca, PA 15061
724-773-3527
cmm48@psu.edu
http://beaver.psu.edu/biology

Berks
DIVISION OF SCIENCE
Luerssen Science Building
Reading, PA 19610
610-396-6328
med18@psu.edu
http://berks.psu.edu/bs-biology

Brandywine
ACADEMIC AFFAIRS
25 Yearsley Mill Rd
Media, PA 19063
610-285-1268
mab90@psu.edu
https://brandywine.psu.edu/academics/bachelors-degrees/biology

Harrisburg
SCHOOL OF SCIENCE, ENGINEERING, AND TECHNOLOGY
Science & Tech Building, TL 177
Middletown, PA 17057
717-948-4387
mrr53@psu.edu
https://harrisburg.psu.edu/science-engineering-technology/biology-science/bachelor-science-biology

Schuylkill
ACADEMIC AFFAIRS
C-001 200 University Drive
Schuylkill Haven, PA 17972
570-385-6167
ljr5322@psu.edu
https://schuylkill.psu.edu/academics/degrees/bacc-degrees/biology

Scranton

BIOLOGY
Dawson 207
Dunmore, PA 18512
570-963-2579
dxb14@psu.edu

https://scranton.psu.edu/biology-degree

University Park

DEPARTMENT OF BIOLOGY
228 Ritenour Building
University Park, PA 16802
814-865-2329
psubioadvising@psu.edu

http://bio.psu.edu/about-us/contact-us

York

1 Elias Science Building
York, PA 17403
717-718-6705
amv12@psu.edu

http://york.psu.edu/academics/baccalaureate/biology