ELECTRICAL ENGINEERING, B.S. (BEHEREND)

Begin Campus: Any Penn State Campus
End Campus: Erie

Program Description

This major provides students with a strong foundation in electrical engineering through a combination of classroom study, projects, and laboratory experience. Analysis and design of electrical and computer systems are stressed. Built upon a core of science and mathematics courses, this major has the objective of educating graduates to be problem solvers. Students acquire the ability to work as members of a team toward successful attainment of a common goal, preparing them for work in industry, or further study in graduate school. In addition, written and oral communication skills are developed from an early stage, culminating in a senior design project that stresses communication as well as engineering content.

In addition to completing a broad-based science and mathematics core, students pursue their interest in electrical engineering by studying the principles of electrical circuits and microelectronics, digital and computer systems, control and communications systems, and electromagnetic fields and waves. Students obtain a broad-based electrical engineering education that is specialized through the selection of technical electives courses. The student will be required to analyze and solve a significant electrical engineering design problem during the senior year.

What is Electrical Engineering?

Electrical engineering is a broad discipline of study that includes circuit design, analog and digital electronics, electromagnetics, electro-optics, control systems, power systems, communications, and signal/image processing. Electrical engineers study and apply physics and mathematics of electrical circuits and microelectronics, digital and computer systems, control and communications systems, and electromagnetic fields and waves. Students obtain a broad-based electrical engineering education that is specialized through the selection of technical electives courses. The student will be required to analyze and solve a significant electrical engineering design problem during the senior year.

You Might Like This Program If...

- You are curious about how electrical and electronic systems function.
- You are interested in engineering, math, and physics.
- You are looking for a broad discipline with career flexibility.
- You enjoy working on team-based projects.

Entrance to Major

In addition to the Carnegie unit and minimum GPA requirements described by University policies, all students applying for entrance to any of the engineering majors at The Behrend College must have at least a 2.0 cumulative GPA by the end of the semester prior to applying for entrance to the major and have completed, with a minimum grade of C: CHEM 110, MATH 140, MATH 141, and PHYS 211. These courses must be completed by the end of the semester during which the admission to major process is carried out.

Degree Requirements

For the Bachelor of Science degree in Electrical Engineering, a minimum of 130 credits is required:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education</td>
<td>45</td>
</tr>
<tr>
<td>Requirements for the Major</td>
<td>106</td>
</tr>
</tbody>
</table>

21 of the 45 credits for General Education are included in the Requirements for the Major. This includes: 9 credits of GN courses; 6 credits of GQ courses; 3 credits of GWS courses; 3 credits of GS courses.

Per Senate Policy 83.80.5, the college dean or campus chancellor and program faculty may require up to 24 credits of coursework in the major to be taken at the location or in the college or program where the degree is earned.

Requirements for the Major

Each student must earn at least a grade of C in each 300- and 400-level course in the major field.

To graduate, a student enrolled in the major must earn a grade of C or better in each course designated by the major as a C-required course, as specified by Senate Policy 82-44 (https://senate.psu.edu/policies-and-rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/#82-44).

Prescribed Courses: Require a grade of C or better

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 111</td>
<td>Experimental Chemistry I</td>
<td>1</td>
</tr>
<tr>
<td>CMPSC 201</td>
<td>Programming for Engineers with C++</td>
<td>3</td>
</tr>
<tr>
<td>EDSDK 100S</td>
<td>Introduction to Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>EMCH 211</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 202C</td>
<td>Effective Writing: Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 212</td>
<td>General Physics: Electricity and Magnetism</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 214</td>
<td>General Physics: Wave Motion and Quantum Physics</td>
<td>2</td>
</tr>
</tbody>
</table>

Prescribed Courses: Require a grade of C or better

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>Chemical Principles I</td>
<td>3</td>
</tr>
<tr>
<td>CMPEN 271</td>
<td>Introduction to Digital Systems</td>
<td>3</td>
</tr>
<tr>
<td>CMPEN 275</td>
<td>Digital Design Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EE 210</td>
<td>Circuits and Devices</td>
<td>4</td>
</tr>
<tr>
<td>EE 310</td>
<td>Electronic Circuit Design I</td>
<td>4</td>
</tr>
<tr>
<td>EE 312</td>
<td>Electrical Circuit Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EE 313W</td>
<td>Electronic Circuit Design II</td>
<td>4</td>
</tr>
<tr>
<td>EE 316</td>
<td>Introduction to Embedded Microcontrollers</td>
<td>3</td>
</tr>
<tr>
<td>EE 331</td>
<td>Electromagnetic Fields and Waves</td>
<td>3</td>
</tr>
<tr>
<td>EE 352</td>
<td>Signals and Systems: Continuous and Discrete-Time</td>
<td>4</td>
</tr>
<tr>
<td>EE 360</td>
<td>Communications Systems I</td>
<td>3</td>
</tr>
<tr>
<td>EE 380</td>
<td>Introduction to Linear Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>EE 383</td>
<td>Signals and Controls Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EE 387</td>
<td>Energy Conversion</td>
<td>3</td>
</tr>
<tr>
<td>EE 400</td>
<td>Engineering Design Concepts</td>
<td>3</td>
</tr>
<tr>
<td>EE 401</td>
<td>Electrical Design Projects</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Calculus With Analytic Geometry I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 141</td>
<td>Calculus with Analytic Geometry II</td>
<td>4</td>
</tr>
</tbody>
</table>
MATH 220 Matrices 2
MATH 230 Calculus and Vector Analysis 4
MATH 250 Ordinary Differential Equations 3
PHYS 211 General Physics: Mechanics 4
STAT 301 3

Additional Courses
ECON 102 Introductory Microeconomic Analysis and Policy 3
or ECON 104 Introductory Macroeconomic Analysis and Policy
Select one of the following:
CMSC 122 Intermediate Programming
ME 201 Introduction to Thermal Science
ME 300 Engineering Thermodynamics I
PHYS 237 Introduction to Modern Physics

Supporting Courses and Related Areas
Select 9 credits of technical courses from school-approved list 2 9

1 ME 300 requires a grade of C or better.
2 These credits must be selected to fulfill the engineering science and design requirements of the major.

General Education
Connecting career and curiosity, the General Education curriculum provides the opportunity for students to acquire transferable skills necessary to be successful in the future and to thrive while living in interconnected contexts. General Education aids students in developing intellectual curiosity, a strengthened ability to think, and a deeper sense of aesthetic appreciation. These are requirements for all baccalaureate students and are often partially incorporated into the requirements of a program. For additional information, see the General Education Requirements (https://bulletins.psu.edu/undergraduate/general-education/baccalaureate-degree-general-education-program/) section of the Bulletin and consult your academic adviser.

The keystone symbol appears next to the title of any course that is designated as a General Education course. Program requirements may also satisfy General Education requirements and vary for each program.

Foundations (grade of C or better is required and Inter-Domain courses do not meet this requirement.)
• Quantification (GQ): 6 credits
• Writing and Speaking (GWS): 9 credits

Breadth in the Knowledge Domains (Inter-Domain courses do not meet this requirement.)
• Arts (GA): 3 credits
• Health and Wellness (GHW): 3 credits
• Humanities (GH): 3 credits
• Social and Behavioral Sciences (GS): 3 credits
• Natural Sciences (GN): 3 credits

Integrative Studies
• Inter-Domain Courses (Inter-Domain): 6 credits

Exploration
• GN, may be completed with Inter-Domain courses: 3 credits
• GA, GH, GN, GS, Inter-Domain courses. This may include 3 credits of World Language course work beyond the 12th credit level or the requirements for the student’s degree program, whichever is higher: 6 credits

University Degree Requirements
First Year Engagement
All students enrolled in a college or the Division of Undergraduate Studies at University Park, and the World Campus are required to take 1 to 3 credits of the First-Year Seminar, as specified by their college First-Year Engagement Plan.

Other Penn State colleges and campuses may require the First-Year Seminar; colleges and campuses that do not require a First-Year Seminar provide students with a first-year engagement experience.

First-year baccalaureate students entering Penn State should consult their academic adviser for these requirements.

Cultures Requirement
6 credits are required and may satisfy other requirements
• United States Cultures: 3 credits
• International Cultures: 3 credits

Writing Across the Curriculum
3 credits required from the college of graduation and likely prescribed as part of major requirements.

Total Minimum Credits
A minimum of 120 degree credits must be earned for a baccalaureate degree. The requirements for some programs may exceed 120 credits. Students should consult with their college or department adviser for information on specific credit requirements.

Quality of Work
Candidates must complete the degree requirements for their major and earn at least a 2.00 grade-point average for all courses completed within their degree program.

Limitations on Source and Time for Credit Acquisition
The college dean or campus chancellor and program faculty may require up to 24 credits of course work in the major to be taken at the location or in the college or program where the degree is earned. Credit used toward degree programs may need to be earned from a particular source or within time constraints (see Senate Policy 83-80 (https://senate.psu.edu/policies-and-rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/#83-80)). For more information, check the Suggested Academic Plan for your intended program.

Academic Advising
The objectives of the university’s academic advising program are to help advisees identify and achieve their academic goals, to promote their intellectual discovery, and to encourage students to take advantage of both in-and-out of class educational opportunities in order that they become self-directed learners and decision makers.

Both advisers and advisees share responsibility for making the advising relationship succeed. By encouraging their advisees to become engaged in their education, to meet their educational goals, and to develop the habit of learning, advisers assume a significant educational role. The advisee’s unit of enrollment will provide each advisee with a primary academic adviser, the information needed to plan the chosen program of study, and referrals to other specialized resources.
A suggested academic plan for the Electrical Engineering major, which is not intended for the Electrical Engineering student. Frank, learn what you need to know and then learn the rest.

School-Approved Electives for Electrical Engineering

Electrical Engineering, B.S. at Erie Campus

Electrical Engineering, B.S. (Behrend).......

Program Notes:

For more information or to view the appropriate bulletin, please visit the archives.psu.edu/undergraduate/archive/ Undergraduate Bulletin edition.

The course series listed below provides a guide of C or better. Technical electives allow students to choose areas of interest to explore.

Suggested Academic Plan

Fall

Spring

Third Year

Fourth Year

Total Credits 130

General Education Course

Technical Elective (300, 400-level)

Technical Elective (300, 400-level)
degree. Secondary technical electives are offered outside your home department and give you a broader latitude. **Students much complete at least two primary technical electives and, at most, one secondary technical elective.** Courses listed below as asynchronous are offered as needed when the appropriate faculty member is available.

Exceptions to the above policy will be granted to students who successfully complete a minor in one of the areas listed in the Academic Minors portion of the School of Engineering Advising

Primary Technical Electives:
- Any 300-400 level SWENG course
- Any 300-400 level EE course not already required for the major
- Any 300-400 level CMPEN course not already required for the major
- Any 400 level CMPSC course not already required for the major, with the exception of CMPSC 455 and CMPSC 456
- Any 300-400 level technical gaming course

Secondary Technical Electives:
- EE 395 - Internship
- EE 495 - Internship
- CMPSC 461 - Programming Language Concept
- CMPSC 471 - Introduction to Compiler Construction
- MGMT 409 - Project Management for Engineers
- PSYCH 444 - Engineering Psychology
- ECON 481 - Business Forecasting Techniques
- ECON 485 - Econometric Techniques
- PHYS 458 - Intermediate Optics
- MATH 455 - Introduction to Numerical Analysis I
- MATH 456 - Introduction to Numerical Analysis II
- IE 302 - Engineering Economy

Career Paths
Because the discipline is so far-reaching, electrical engineers typically specialize in an area such as microelectronics, computing, communications, signal processing, control systems, or robotics. From there you can further tailor your electrical engineering career to your unique interests and talents by focusing on design, manufacturing, technical sales, research, or a similar professional specialty. Penn State Behrend has a comprehensive support system to help you identify and achieve your goals for college and beyond. Meet with your academic adviser often, and take advantage of the services offered by the Academic and Career Planning Center beginning with your first semester.

Careers
Employers of recent Penn State Behrend B.S. in Electrical Engineering graduates include BASF, Bechtel, Bettis Atomic Power Laboratory, First Energy, FMC Technologies, General Dynamics Electric Boat, Lockheed Martin, Mercedes Benz, Westinghouse, Southern Maryland Electric Cooperative, and Zoll Medical Corp.

Opportunities for Graduate Studies
Graduate programs in electrical engineering delve more deeply into areas of specialization such as signal processing, solid-state devices, photonics, digital systems, computer architecture, and nanotechnology. Electrical engineering can also be a foundation for graduate study in another engineering discipline, such as civil or aerospace engineering. Or, you can earn a master’s degree to learn management skills; Penn State Behrend offers a Master of Manufacturing Management (M.M.M) degree program for aspiring organizational leaders.

Professional Resources
- ABET (https://www.abet.org/)
- Institution of Electrical and Electronics Engineers (IEEE) Computer Society (https://www.computer.org/)
- Association for Computing Machinery (https://www.acm.org/)
- Society of Women Engineers (https://swe.org)
- National Society of Black Engineers (https://www.nsbe.org)

Accreditation
The Bachelor of Science in Electrical Engineering at Penn State Behrend is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the commission’s General Criteria and Program Criteria for Electrical, Computer, Communications, Telecommunication(s), and Similarly Named Engineering Programs.

Professional Licensure/Certification
Many U.S. states and territories require professional licensure/certification to be employed. If you plan to pursue employment in a licensed profession after completing this program, please visit the Professional Licensure/Certification Disclosures by State (https:/www.psu.edu/state-licensure-disclosures/) interactive map.

Contact
Erie
SCHOOL OF ENGINEERING
242 Jack Burke Research and Economic Development Center
Erie, PA 16563
814-898-6153
engineering@psu.edu
https://behrend.psu.edu/school-of-engineering