ELECTRICAL ENGINEERING TECHNOLOGY, A.ENGT. (BEHREND)

Begin Campus: Erie
End Campus: Erie

Program Description
The Electrical Engineering Technology (2EET) major helps prepare graduates for technical positions in the expanding fields of electronics, computers, and microprocessors, instrumentation, and electrical equipment. The primary objective is to provide a broad foundation of theoretical and practical knowledge in the areas of electrical and electronic circuits, digital circuits, computers, electrical machinery, and programmable logic controls.

Graduates of the Electrical Engineering Technology major may qualify for admission to the baccalaureate degree majors in Electrical Engineering Technology offered at Penn State Harrisburg, Capital College; the baccalaureate degree major in Electrical and Computer Engineering Technology at Penn State Erie, The Behrend College; or the baccalaureate degree major in Electro-Mechanical Engineering Technology offered at Penn State Altoona, Penn State Berks, Penn State New Kensington or Penn State York. Two baccalaureate tracks are available to streamline the transition to these degree programs. Students interested in pursuing the baccalaureate degree major of Electrical Engineering Technology at Penn State Harrisburg should follow track c. A general track is also provided for students who decide not to continue their engineering technology education at the baccalaureate level.

What is Electrical Engineering Technology?
Electrical engineering technology focuses on the planning, designing, installing, operating, and maintaining electrical power systems and electronic devices. Electrical engineering technicians assist engineers with the manufacture, installation, operation, design, and repair of a wide range of electronic products.

You Might Like This Program If...
You are interested in science and technology but prefer spending time applying your skills in a laboratory or field setting as opposed to studying the theory behind these subjects in a classroom setting. If you like to know how things that are controlled by electronics work, from computers to robotics, this may be for you. While theory is covered in this major, there is a greater emphasis on the application of theory with much of what you learn in the classroom being built as lab experiments.

Entrance to Major
Students must have a minimum 2.0 GPA to change to this Associate degree after admission to the University.

Degree Requirements
For the Associate in Engineering Technology degree in Electrical Engineering Technology, a minimum of 65 credits is required:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education</td>
<td>21</td>
</tr>
<tr>
<td>Requirements for the Major</td>
<td>56-62</td>
</tr>
</tbody>
</table>

12-15 of the 21 credits for General Education are included in the Requirements for the Major. This includes: 3 credits of GN courses; 3 credits of GQ courses; 6 credits of GWS courses; 0-3 credits of GH or GS.

Requirements for the Major
To graduate, a student enrolled in the major must earn a grade of C or better in each course designated by the major as a C-required course, as specified by Senate Policy 82-44 (https://senate.psu.edu/policies-and-rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/#82-44).

<table>
<thead>
<tr>
<th>Code</th>
<th>Prescribed Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS 100</td>
<td>Effective Speech</td>
<td>3</td>
</tr>
<tr>
<td>CMPET 211</td>
<td>Embedded Processors and DSP</td>
<td>3</td>
</tr>
<tr>
<td>EET 212W</td>
<td>Op Amp and Integrated Circuit Electronics</td>
<td>4</td>
</tr>
<tr>
<td>EET 214</td>
<td>Electric Machines and Energy Conversion</td>
<td>3</td>
</tr>
<tr>
<td>EET 215</td>
<td>Electric Machines and Energy Conversion Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CMPET 117</td>
<td>Digital Electronics</td>
<td>3</td>
</tr>
<tr>
<td>CMPET 120</td>
<td>Digital Electronics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EET 114</td>
<td>Electrical Circuits II</td>
<td>4</td>
</tr>
<tr>
<td>EET 118</td>
<td>Electrical Circuits Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

Additional Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 15</td>
<td>Rhetoric and Composition or ENGL 30H Honors</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 150</td>
<td>Technical Physics I</td>
<td>3-4</td>
</tr>
<tr>
<td>or PHYS 211</td>
<td>General Physics: Mechanics</td>
<td></td>
</tr>
<tr>
<td>or PHYS 250</td>
<td>Introductory Physics I</td>
<td></td>
</tr>
<tr>
<td>MATH 22 & MATH 26</td>
<td>College Algebra With Analytic Geometry Applications II and Plane Trigonometry and Applications of Trigonometry</td>
<td>5-6</td>
</tr>
<tr>
<td>MATH 40</td>
<td>Algebra, Trigonometry, and Analytic Geometry</td>
<td>1</td>
</tr>
<tr>
<td>MATH 81 & MATH 82</td>
<td>Technical Mathematics I and Technical Mathematics II</td>
<td>1</td>
</tr>
</tbody>
</table>

Select at least 22-26 credits from one of the following three tracks: 22-26

A. General Track

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDSGN 100</td>
<td>Cornerstone Engineering Design</td>
<td></td>
</tr>
<tr>
<td>EET 105</td>
<td>Electrical Systems</td>
<td></td>
</tr>
<tr>
<td>EET 275</td>
<td>Introduction to Programmable Logic Controls or EMET 230Computerized I/O Systems</td>
<td></td>
</tr>
<tr>
<td>IET 101</td>
<td>Manufacturing Materials, Processes, and Laboratory</td>
<td></td>
</tr>
<tr>
<td>MET 111</td>
<td>Mechanics for Technology Statics</td>
<td></td>
</tr>
<tr>
<td>PHYS 151</td>
<td>Technical Physics II</td>
<td></td>
</tr>
<tr>
<td>or PHYS 212</td>
<td>General Physics: Electricity and Magnetism</td>
<td></td>
</tr>
<tr>
<td>or PHYS 251</td>
<td>Introductory Physics II</td>
<td></td>
</tr>
</tbody>
</table>
or CHEM 111 (Chemical Principles I) & CHEM 111 and Experimental Chemistry I

STS 200 Critical Issues in Science, Technology, and Society
or STS/PHIL 233 or STS 245

Select 3-4 credits in consultation with your adviser from the approved program list

B. Baccalaureate Electrical and Computer Engineering Technology (ECET) Track:

CHEM 110 Chemical Principles I
CHEM 111 Experimental Chemistry I
CMPET 5 Engineering Methods in Engineering Technology
EET 2 Introduction to Engineering Technology
EET 101 Electrical Circuits I
EET 109 Electrical Circuits Laboratory I
EET 275 Introduction to Programmable Logic Controls
EGT 119 Introduction to CAD for Electrical and Computer Engineering

MATH 83 Technical Calculus
or MATH 141 Calculus With Analytic Geometry I
MATH 210 Calculus with Engineering Technology Applications (or 3 credits of General Education自然科学 GN)

C. Baccalaureate Electro-Mechanical Engineering Technology (EMET) Track

EDSGN 100 Cornerstone Engineering Design
EET 105 Electrical Systems
EET 275 Introduction to Programmable Logic Controls
or EMET 230 Computerized I/O Systems
IET 101 Manufacturing Materials, Processes, and Laboratory
MET 111 Mechanics for Technology: Statics
MATH 83 Technical Calculus
or MATH 141 Calculus With Analytic Geometry I
PHYS 151 Technical Physics II
or PHYS 212 General Physics: Electricity and Magnetism
or PHYS 251 Introductory Physics II
or CHEM 110 Chemical Principles I & CHEM 111 and Experimental Chemistry I

STS 200 Critical Issues in Science, Technology, and Society
or STS/PHIL 233 or STS 245

1 A student planning to re-enroll into the baccalaureate degree major of Electro-Mechanical Engineering Technology (EMET), after graduation from the 2EET program, must receive a grade of C or better in order to meet requirements of the EMET degree.
2 This includes 3 credits of General Education courses; 3 credits of GH or GS.
3 A student planning to re-enroll into the baccalaureate degree major of Electrical Engineering Technology at Penn State Harrisburg, after graduation from the 2EET program, should follow Track C. They should select MATH 140 instead of MATH 83.

General Education

Connecting career and curiosity, the General Education curriculum provides the opportunity for students to acquire transferable skills necessary to be successful in the future and to thrive while living in interconnected contexts. General Education aids students in developing intellectual curiosity, a strengthened ability to think, and a deeper sense of aesthetic appreciation. These are requirements for all associate degree students and are often partially incorporated into the requirements of a program. For additional information, see the General Education Requirements (https://bulletins.psu.edu/undergraduate/general-education/associate-degree-general-education-program/) section of the Bulletin and consult your academic adviser.

The keystone symbol appears next to the title of any course that is designated as a General Education course. Program requirements may also satisfy General Education requirements and vary for each program.

Foundations (grade of C or better is required and Inter-Domain courses do not meet this requirement.)
• Quantification (GQ): 3 credits
• Writing and Speaking (GWS): 3 credits

Knowledge Domains
• Arts (GA): 3 credits
• Humanities (GH): 3 credits
• Social and Behavioral Sciences (GS): 3 credits
• Natural Sciences (GN): 3 credits

Note: Up to six credits of Inter-Domain courses may be used for any Knowledge Domain requirement, but when a course may be used to satisfy more than one requirement, the credits from the course can be counted only once.

Exploration
• Any General Education course (including GHW and Inter-Domain): 3 credits

University Degree Requirements

Cultures Requirement
3 credits of United States (US) or International (IL) cultures coursework are required and may satisfy other requirements

Writing Across the Curriculum
3 credits required from the college of graduation and likely prescribed as part of major requirements.

Total Minimum Credits
A minimum of 60 degree credits must be earned for a associates degree. The requirements for some programs may exceed 60 credits. Students should consult with their college or department adviser for information on specific credit requirements.

Quality of Work
Candidates must complete the degree requirements for their major and earn at least a 2.00 grade-point average for all courses completed within their degree program.

Limitations on Source and Time for Credit Acquisition
Credit used toward degree programs may need to be earned from a particular source or within time constraints (see Senate Policy...
Program Educational Objectives
The Associate Electrical Engineering Technology program is designed to provide a curriculum that prepares students to pursue a career in the industry and to develop in their profession. Due to their experience in the Associate Electrical Engineering Technology program, within few years of graduation, we expect our graduates to have the ability to:

1. Apply analytical and empirical skills in the operation, testing, or maintenance of electrical systems.
2. Collaborate effectively in project team activities through recognizing the global, societal, and ethical contexts of their work.
3. Communicate effectively through preparation and delivery of technical and non-technical documentation and communications.

Student Outcomes
Student outcomes describe what students are expected to know and be able to do by the time of graduation. The Associate Electrical Engineering Technology program is designed to enable students to:

1. Apply knowledge, techniques, skills, and modern tools of mathematics, science, engineering, and technology to solve well-defined engineering problems appropriate to the discipline.
2. Design solutions for well-defined technical problems and assist with engineering design of systems, components, or processes appropriate to the discipline.
3. Apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature.
4. Conduct standard tests, measurements, and experiments and to analyze and interpret the results.
5. Function effectively as a member of a technical team.

Academic Advising
The objectives of the university’s academic advising program are to help advisees identify and achieve their academic goals, to promote their intellectual discovery, and to encourage students to take advantage of both in-and out-of class educational opportunities in order that they become self-directed learners and decision makers.

Both advisers and advisees share responsibility for making the advising relationship succeed. By encouraging their advisees to become engaged in their education, to meet their educational goals, and to develop the habit of learning, advisers assume a significant educational role. The advisee’s unit of enrollment will provide each advisee with a primary academic adviser, the information needed to plan the chosen program of study, and referrals to other specialized resources.

READ SENATE POLICY 32-00: ADVISING POLICY (https://senate.psu.edu/policies-and-rules-for-undergraduate-students/32-00-advising-policy/)

Suggested Academic Plan
The suggested academic plan(s) listed on this page are the plan(s) that are in effect during the 2023-24 academic year. To access previous years’ suggested academic plans, please visit the archive (https://bulletins.psu.edu/undergraduate/archive/) to view the appropriate Undergraduate Bulletin edition (Note: the archive only contains suggested academic plans beginning with the 2018-19 edition of the Undergraduate Bulletin).

Electrical Engineering Technology, A.ENGT. at Erie Campus
The course series listed below provides only one of the many possible ways to move through this curriculum. The University may make changes in policies, procedures, educational offerings, and requirements at any time. This plan should be used in conjunction with your degree audit (accessible in LionPATH as either an Academic Requirements or What If report). Please consult with a Penn State academic adviser on a regular basis to develop and refine an academic plan that is appropriate for you.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EET 101</td>
<td>3</td>
<td>EET 114*</td>
<td>4</td>
</tr>
<tr>
<td>EET 109</td>
<td>1</td>
<td>EET 118†</td>
<td>1</td>
</tr>
<tr>
<td>EET 2†</td>
<td>1</td>
<td>CMPET 117†</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 15, 30H, or ESL 15 (GWS)††</td>
<td>3</td>
<td>CMPET 120†</td>
<td>1</td>
</tr>
<tr>
<td>General Education Course</td>
<td>3</td>
<td>CMPET 5</td>
<td>1</td>
</tr>
<tr>
<td>General Education Course</td>
<td>3</td>
<td>MATH 41</td>
<td>4</td>
</tr>
<tr>
<td>General Education Course</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>**</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS 100 (GWS)††</td>
<td>3</td>
<td>CHEM 110 (GN)†</td>
<td>3</td>
</tr>
<tr>
<td>CMPET 211</td>
<td>3</td>
<td>CHEM 111†</td>
<td>1</td>
</tr>
<tr>
<td>EET 212W</td>
<td>4</td>
<td>EET 275</td>
<td>3</td>
</tr>
<tr>
<td>EET 214</td>
<td>3</td>
<td>EGT 119</td>
<td>2</td>
</tr>
<tr>
<td>EET 215</td>
<td>1</td>
<td>MATH 210 (GQ) or Natural Science Course (GN)</td>
<td>3</td>
</tr>
</tbody>
</table>

Electrical Engineering Technology, A.ENGT. (Behrend)
83-80 (https://senate.psu.edu/policies-and-rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/#83-80)). For more information, check the Suggested Academic Plan for your intended program.
Career Paths
For students that do not continue on for a Bachelor of Engineering Technology Degree, there are various opportunities in the field for Electrical Engineering Technology. In many industrial settings, an Engineer works on the design of an electronic device, such as an electronic sensor, or system, such as a robotic arm, and the technician helps to build and test it. The technician might also be responsible for building test equipment to test the device or system once it is manufactured. In addition, the Electronic Technician might also be involved in servicing equipment in the field or be involved in sales.

MORE INFORMATION ABOUT POTENTIAL CAREER OPTIONS FOR GRADUATES OF THE ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM (https://career.engr.psu.edu/)

MORE INFORMATION ABOUT OPPORTUNITIES FOR GRADUATE STUDIES (https://www.engr.psu.edu/graduate-programs/)

Accreditation
The A.ENGT. in Electrical Engineering Technology at Penn State Behrend is accredited by the Engineering Technology Accreditation Commission of ABET. https://www.abet.org, under the General Criteria and the Electrical and Electronics Engineering Technology Program Criteria.

Professional Licensure/Certification
Many U.S. states and territories require professional licensure/certification to be employed. If you plan to pursue employment in a licensed profession after completing this program, please visit the

Contact
Erie
SCHOOL OF ENGINEERING
242 Jack Burke Research and Economic Development Center
5101 Jordan Road
Erie, PA 16563
814-898-6125
engineering@psu.edu
http://behrend.psu.edu/school-of-engineering (http://behrend.psu.edu/school-of-engineering/)

Fayette
2201 University Drive
Leomont Furnace, PA 15456
724-430-4239
ajg2@psu.edu
http://fayette.psu.edu/electrical-engineering-technology (http://fayette.psu.edu/electrical-engineering-technology/)

University Park
SCHOOL OF ENGINEERING DESIGN AND INNOVATION
213 Hammond Building
University Park, PA 16802
814-865-2952
https://www.sedi.psu.edu/

York
1031 Edgecomb Ave.
York, PA 17403
717-718-6787
pdh7@psu.edu
https://www.york.psu.edu/academics/associate/electrical-engineering-technology (https://www.york.psu.edu/academics/associate/electrical-engineering-technology/)