BIOCHEMISTRY AND MOLECULAR BIOLOGY, B.S. (BERKS)

Begin Campus: Any Penn State Campus
End Campus: Berks

Program Description
Students in this major apply basic principles of chemistry and physics to the study of living cells and their components to explain biology at molecular, genetic, and cellular levels. Students will develop a strong foundation in quantitative and analytical biological sciences, including molecular biology, biochemistry, enzymology, metabolism, cell biology, and molecular genetics.

Biochemistry Option
Available at the following campuses: Berks, University Park

The Biochemistry Option is offered for students who have interests in the structures, properties and functions of macromolecules, and in the quantitative and analytical techniques used to characterize these macromolecules.

Molecular and Cell Biology Option
Available at the following campuses: Berks, University Park

The Molecular and Cell Biology Option is available to students whose interests relate to the growth, reproduction and differentiation of cells and to signaling processes that occur in multicellular systems that activate and modulate these processes. The curriculum is designed to prepare students for advanced study leading to careers in research, medicine, and education, or to secure employment in biotechnology and health-related industries, including government, academic, and private laboratories.

What is Biochemistry and Molecular Biology?
Biochemistry and Molecular Biology is the study of the molecular basis of life. Biochemistry uses the principles of chemistry and physics to understand biological molecules, structures, and reactions. Molecular biology focuses on how biological molecules interact to form cells, organisms, and behaviors.

You Might Like This Program If...
- You like learning by doing experiments.
- You want to know how life works at the most fundamental level.
- You are interested in understanding the molecular basis of health, disease, and behavior.
- You want to learn how molecules can be manipulated to address global challenges such as disease, famine, and energy needs.

Entrance to Major
In order to be eligible for entrance to the Biochemistry and Molecular Biology major, a student must have:
1. attained at least a 2.00 cumulative grade-point average, and
2. completed CHEM 110, CHEM 111, CHEM 112, and MATH 140; and
3. earned a grade of C or better in each of these courses.

Degree Requirements
For the Bachelor of Science degree in Biochemistry and Molecular Biology, a minimum of 125 credits is required:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education</td>
<td>45</td>
</tr>
<tr>
<td>Requirements for the Major</td>
<td>95</td>
</tr>
</tbody>
</table>

15 of the 45 credits for General Education are included in the Requirements for the Major. This: 9 credits of GN courses; 6 credits of GQ courses.

General Education
Connecting career and curiosity, the General Education curriculum provides the opportunity for students to acquire transferable skills necessary to be successful in the future and to thrive while living in interconnected contexts. General Education aids students in developing intellectual curiosity, a strengthened ability to think, and a deeper sense of aesthetic appreciation. These are requirements for all baccalaureate students and are often partially incorporated into the requirements of a program. For additional information, see the General Education Requirements (http://bulletins.psu.edu/undergraduate/general-education/baccalaureate-degree-general-education-program) section of the Bulletin and consult your academic adviser.

The keystone symbol appears next to the title of any course that is designated as a General Education course. Program requirements may also satisfy General Education requirements and vary for each program.

Foundations (grade of C or better is required.)
- Quantification (GQ): 6 credits
- Writing and Speaking (GWS): 9 credits

Knowledge Domains
- Arts (GA): 6 credits
- Health and Wellness (GHW): 3 credits
- Humanities (GH): 6 credits
- Social and Behavioral Sciences (GS): 6 credits
- Natural Sciences (GN): 9 credits

Integrative Studies (may also complete a Knowledge Domain requirement)
- Inter-Domain or Approved Linked Courses: 6 credits

University Degree Requirements
First Year Engagement
All students enrolled in a college or the Division of Undergraduate Studies at University Park, and the World Campus are required to take 1 to 3 credits of the First-Year Seminar, as specified by their college First-Year Engagement Plan.

Other Penn State colleges and campuses may require the First-Year Seminar; colleges and campuses that do not require a First-Year Seminar provide students with a first-year engagement experience.

First-year baccalaureate students entering Penn State should consult their academic adviser for these requirements.
Common Requirements for the Major (All Options)

#82-44) rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/ specified by Senate Policy 82-44

To graduate, a student enrolled in the major must earn a grade of C or better in each course designated by the major as a C-required course, as well as:

- United States Cultures: 3 credits
- International Cultures: 3 credits

Writing Across the Curriculum

3 credits required from the college of graduation and likely prescribed as part of major requirements.

Total Minimum Credits

A minimum of 120 degree credits must be earned for a baccalaureate degree. The requirements for some programs may exceed 120 credits. Students should consult with their college or department adviser for information on specific credit requirements.

Quality of Work

Candidates must complete the degree requirements for their major and earn at least a 2.00 grade-point average for all courses completed within their degree program.

Limitations on Source and Time for Credit Acquisition

The college dean or campus chancellor and program faculty may require up to 24 credits of course work in the major to be taken at the location or in the college or program where the degree is earned. Credit used toward degree programs may need to be earned from a particular source or within time constraints (see Senate Policy 83-80). For more information, check the Suggested Academic Plan for your intended program.

Requirements for the Major

To graduate, a grade of C or better is required in 9 credits of any BMB or MICRB 400-level course except: BMB 408, BMB 442, BMB 443W, BMB 445W, BMB 448, BMB 496 MICRB 408, MICRB 421W, MICRB 422, MICRB 447.

To graduate, a student enrolled in the major must earn a grade of C or better in two of the following courses:

- MICRB 201, BMB 251
- MICRB 251, BMB 252

Additional Courses

BMB 445W
- Laboratory in Molecular Genetics I
- or BMB 448
- Model Systems and Approaches in Cell Biology Inquiry

Requirements for the Option

Select an option

40

1 To graduate, a grade of C or better is required in two of the following courses: MICRB 201, BMB 251/MICRB 251, and/or BMB 252/MICRB 252.

Biochemistry Option (40 credits)

Available at the following campuses: Berks, University Park

Code	Title	Credits
MICRB 201 | Introductory Microbiology | 3
MICRB 202 | Introductory Microbiology Laboratory | 2
PSU 16 | First-Year Seminar Science | 1

Prescribed Courses: Require a grade of C or better

CHEM 110 | Chemical Principles I | 3
CHEM 111 | Experimental Chemistry I | 1
CHEM 112 | Chemical Principles II | 3
MATH 140 | Calculus With Analytic Geometry I | 4

Additional Courses

BMB 445W
- Laboratory in Molecular Genetics I
- or BMB 448
- Model Systems and Approaches in Cell Biology Inquiry

Molecular and Cell Biology Option (40 credits)

Available at the following campuses: Berks, University Park

Code	Title	Credits
BMB 474 | Analytical Biochemistry | 3
CHEM 450 | Physical Chemistry - Thermodynamics | 3
CHEM 452 | Physical Chemistry - Quantum Chemistry | 3
PHYS 211 | General Physics: Mechanics | 4
PHYS 212 | General Physics: Electricity and Magnetism | 4
PHYS 213 | General Physics: Fluids and Thermal Physics | 2
PHYS 214 | General Physics: Wave Motion and Quantum Physics | 2

Supporting Courses and Related Areas

Select 7-9 credits from any 400-level BMB/CHEM/MICRB course or from department list D (additional 400-level courses) | 7-9
Select 2-3 credits in the mathematical sciences from department list B | 2-3
Select 7-10 credits from department list C | 7-10

1 With a maximum of 3 credits in BMB 408 and/or MICRB 408

Molecular and Cell Biology Option (40 credits)

Available at the following campuses: Berks, University Park

Code	Title	Credits
BMB 430 | Developmental Biology | 3
BMB 460 | Cell Growth and Differentiation | 3
MICRB 410 | Principles of Immunology | 3

Additional Courses

Select 8 credits of the following:

PHYS 211 | General Physics: Mechanics
& PHYS 212 and General Physics: Electricity and Magnetism
PHYS 250 | Introductory Physics I
& PHYS 251 and Introductory Physics II

Select 3-6 credits of the following:

1 With a maximum of 3 credits in BMB 408 and/or MICRB 408

and a maximum of 4 credits in BMB 488 and/or BMB 496.
Program Learning Objectives

1. Students will be able to explain the following core concepts as recommended by the American Society for Biochemistry and Molecular Biology (ASBMB):
 a. Energy:
 i. Students will explain how energy is utilized and transformed in biological systems.
 ii. Students will explain their knowledge of basic chemical thermodynamics to biological systems
 b. Structure and Function:
 i. Students will explain the importance of macromolecular structure in biological systems.
 ii. Students will be able to discuss the diversity and complexity of various biologically relevant macromolecules and macromolecular assemblies in terms of the basic repeating units of the polymer and the types of linkages between them.
 c. Information Storage:
 i. Students will define what a genome and explain how the information in the various genes and other sequence classes within each genome are used to store and express genetic information.
 ii. Students should be able to explain the central dogma of biology and relate the commonality of the process to all of life.
 iii. Students should be able to illustrate how DNA is replicated and genes are transmitted from one generation to the next in multiple types of organisms including bacteria, eukaryotes, viruses, and retroviruses.

2. Students will demonstrate competence in the following skills related to experimental design:
 a. Students will be able to develop a hypothesis, design and conduct appropriate experiments.
 b. Students will analyze and interpret data using appropriate quantitative modeling and simulation tools.
 c. Students will keep an accurate laboratory notebook.

3. Students will demonstrate competency in the following skills related to information technology:
 a. Students will be able to assess and use available information.
 i. Find and use the primary literature.
 ii. Use databases and bioinformatics tools.
 b. Students will be able to present scientific data in both written and oral formats
 a. Students will use visual and verbal tools to explain concepts and data.
 b. Students will translate science into everyday examples.

4. Students will be able to read, interpret and critically analyze primary literature.

5. Students will be able to recognize and apply ethical principles to basic and applies practice and seek opportunities for interdisciplinary work.

7. Students will be able to work effectively as a member of a team.

Academic Advising

The objectives of the university’s academic advising program are to help advisees identify and achieve their academic goals, to promote their intellectual discovery, and to encourage students to take advantage of both in-and out-of-class educational opportunities in order that they become self-directed learners and decision makers.

Both advisers and advisees share responsibility for making the advising relationship succeed. By encouraging their advisees to become engaged in their education, to meet their educational goals, and to develop the habit of learning, advisers assume a significant educational role. The advisee’s unit of enrollment will provide each advisee with a primary academic adviser, the information needed to plan the chosen program of study, and referrals to other specialized resources.

Suggested Academic Plan

Biochemistry Option at Berks Campus

The course series listed below provides only one of the many possible ways to move through this curriculum. The University may make changes in policies, procedures, educational offerings, and requirements at any time. This plan should be used in conjunction with your degree audit (accessible in LionPATH as either an Academic Requirements or What If report). Please consult with a Penn State academic adviser on a regular basis to develop and refine an academic plan that is appropriate for you.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 15 or 30†</td>
<td>3</td>
<td>CAS 100A or 100B‡</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140**§‡</td>
<td>4</td>
<td>MATH 141†</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 110*†</td>
<td>3</td>
<td>CHEM 112**†</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 111**†</td>
<td>1</td>
<td>CHEM 113†</td>
<td>1</td>
</tr>
<tr>
<td>General Education Course</td>
<td>3</td>
<td>PHYS 211†</td>
<td>4</td>
</tr>
</tbody>
</table>
First-Year Seminar

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 General Education Course (GHW)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credits</th>
<th>Spring Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BMB 251*</td>
<td>3</td>
<td>ENGL 202C†</td>
</tr>
<tr>
<td></td>
<td>CHEM 210</td>
<td>3</td>
<td>BMB 252*</td>
</tr>
<tr>
<td></td>
<td>PHYS 212</td>
<td>4</td>
<td>CHEM 212</td>
</tr>
<tr>
<td></td>
<td>MICRB 201*</td>
<td>3</td>
<td>CHEM 213</td>
</tr>
<tr>
<td></td>
<td>MICRB 202</td>
<td>2</td>
<td>PHYS 213</td>
</tr>
</tbody>
</table>

General Education Course (GHW) 1.5

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credits</th>
<th>Spring Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BMB 401</td>
<td>3</td>
<td>BMB 402</td>
</tr>
<tr>
<td></td>
<td>BMB 442</td>
<td>3</td>
<td>BMB 443W (Course fulfills the Writing Across The Curriculum Requirement.)</td>
</tr>
<tr>
<td></td>
<td>CHEM 450</td>
<td>3</td>
<td>BIOL 322</td>
</tr>
<tr>
<td></td>
<td>STAT 250</td>
<td>3</td>
<td>CHEM 452</td>
</tr>
<tr>
<td></td>
<td>General Education Course</td>
<td>3</td>
<td>General Education Course</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credits</th>
<th>Spring Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BMB 448 (Students must complete either BMB 445W or BMB 448. BMB 445W is offered Spring Semester only and BMB 448 is offered Fall Semester only.)</td>
<td>2</td>
<td>BMB 445W (Students must complete either BMB 445W or BMB 448. BMB 445W is offered Spring Semester only and BMB 448 is offered Fall Semester only.)</td>
</tr>
<tr>
<td></td>
<td>400 Level BIOL or BMB or CHEM or MICRB Selection</td>
<td>3</td>
<td>BMB 400</td>
</tr>
<tr>
<td></td>
<td>400 Level BIOL or BMB or CHEM or MICRB Selection</td>
<td>3</td>
<td>BMB 474</td>
</tr>
<tr>
<td></td>
<td>Department List Selection</td>
<td>3</td>
<td>400 Level BIOL or BMB or CHEM or MICRB Selection</td>
</tr>
<tr>
<td></td>
<td>Department List Selection</td>
<td>3</td>
<td>Department List Selection</td>
</tr>
<tr>
<td></td>
<td>General Education Course</td>
<td>3</td>
<td>General Education Course</td>
</tr>
</tbody>
</table>

Total Credits 127

* Course requires a grade of C or better for the major

† Course is an Entrance to Major requirement

University Requirements and General Education Notes:

US and IL are abbreviations used to designate courses that satisfy University Requirements (United States and International Cultures).

W, M, X, and Y are the suffixes at the end of a course number used to designate courses that satisfy University Writing Across the Curriculum requirement.

GWS, GQ, GHW, GN, GA, GH, and GS are abbreviations used to identify General Education program courses. General Education includes Foundations (GWS and GQ) and Knowledge Domains (GHW, GN, GA, GH, GS, and Integrative Studies). Foundations courses (GWS and GQ) require a grade of ‘C’ or better.

Integrative Studies courses are required for the General Education program. N is the suffix at the end of a course number used to designate an Inter-Domain course and Z is the suffix at the end of a course number used to designate a Linked course.

1. The following courses are offered Fall Semester only: BMB 251, 401, 442, CHEM 210, 450.
2. The following courses are offered Spring Semester only: BMB 252, 400, 402, 443, 474, CHEM 452, PHYS 213, 214.
3. Students must earn a quality grade of C or better in nine (9) credits of BMB and/or MICRB courses. Consult adviser for details.

Molecular Biology Option Berks Campus

The course series listed below provides only one of the many possible ways to move through this curriculum. The University may make changes in policies, procedures, educational offerings, and requirements at any time. This plan should be used in conjunction with your degree audit accessible in LionPATH as either an Academic Requirements or What If report. Please consult with a Penn State academic adviser on a regular basis to develop and refine an academic plan that is appropriate for you.

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credits</th>
<th>Spring Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 15 or 30†</td>
<td>3</td>
<td>CAS 100A or 100B†</td>
</tr>
<tr>
<td></td>
<td>MATH 140**#</td>
<td>4</td>
<td>MATH 141†</td>
</tr>
<tr>
<td></td>
<td>CHEM 110*</td>
<td>3</td>
<td>CHEM 112*</td>
</tr>
<tr>
<td></td>
<td>CHEM 111*</td>
<td>3</td>
<td>CHEM 113†</td>
</tr>
<tr>
<td></td>
<td>General Education Course</td>
<td>3</td>
<td>General Education Course</td>
</tr>
<tr>
<td></td>
<td>First-Year Seminar</td>
<td>1</td>
<td>General Education Course</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credits</th>
<th>Spring Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BMB 251*</td>
<td>3</td>
<td>ENGL 202C†</td>
</tr>
<tr>
<td></td>
<td>CHEM 210</td>
<td>3</td>
<td>BMB 252*</td>
</tr>
<tr>
<td></td>
<td>PHYS 250</td>
<td>4</td>
<td>CHEM 212</td>
</tr>
<tr>
<td></td>
<td>MICRB 201*</td>
<td>3</td>
<td>CHEM 213</td>
</tr>
<tr>
<td></td>
<td>MICRB 202</td>
<td>2</td>
<td>PHYS 251</td>
</tr>
<tr>
<td></td>
<td>General Education Course (GHW)</td>
<td>1.5</td>
<td>General Education Course (GHW)</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credits</th>
<th>Spring Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BMB 401</td>
<td>3</td>
<td>BMB 402</td>
</tr>
<tr>
<td></td>
<td>BMB 430</td>
<td>3</td>
<td>BMB 443W (Course fulfills the Writing Across The Curriculum Requirement.)</td>
</tr>
<tr>
<td></td>
<td>BMB 442</td>
<td>3</td>
<td>BIOL 322</td>
</tr>
<tr>
<td></td>
<td>STAT 250</td>
<td>3</td>
<td>MICRB 410</td>
</tr>
</tbody>
</table>

Total Credits 127

* Course requires a grade of C or better for the major

† Course is an Entrance to Major requirement

Course is an Entrance to Major requirement

‡ Course satisfies General Education and degree requirement
Career Paths

Penn State students with a B.S. in Biochemistry & Molecular Biology are prepared for jobs in industry as well as government, medical, and university research laboratories. Many students also decide to continue their studies by attending graduate programs or professional schools including medical, dental, business, and law school.

Careers

A B.S. in Biochemistry and Molecular Biology prepares students for a wide variety of careers, including health related professions, professions in academia, government, and industry. Examples of biochemistry related careers are:

- Agricultural Scientist
- Biological / Media Illustrator
- Biomedical Researcher
- Drug Development
- Genetic Counselor
- Genetic Engineer
- Health Professions – e.g. Dentist, Optometrist, Pharmacist, Physician, Physician Assistant
- Industry Scientist
- Pharmaceutical Sales
- Pharmaceutical Sciences
- Professor
- Science Policy Expert
- Optometrist
- Science Writer / Editor
- Patent Attorney
- Research Technician

MORE INFORMATION ABOUT POTENTIAL CAREER OPTIONS FOR GRADUATES OF THE BIOCHEMISTRY AND MOLECULAR BIOLOGY PROGRAM (http://www.asbmb.org/careers/paths)

Opportunities for Graduate Study

Many Penn State students with a BS in Biochemistry and Molecular Biology will pursue graduate education in biochemistry or other related disciplines (biology, bioinformatics, chemistry, genomics, immunology, neurobiology, toxicology, pharmacology, and others). A B.S. in Biochemistry and Molecular Biology also prepares students to pursue higher degrees in the health professions. Opportunities for graduate studies include, but are not limited to, the following:

- Graduate Studies (M.S. or Ph.D.)
- Dental School Medical School (MD or DO)
- Optometry School, Pharmacy School
- Physical Therapy School
- Veterinary School.

In addition, graduates with a BMB degree may decide to pursue further education in law or business.

Professional Resources

- American Society for Biochemistry and Molecular Biology (https://www.asbmb.org)
Contact

Berks
DIVISION OF SCIENCE
Luerssen Science Building
Reading, PA 19610
610-396-6328
med18@psu.edu

http://berks.psu.edu/bs-biochemistry-molecular-biology

University Park
DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOLOGY
108 Althouse Laboratory
University Park, PA 16802
814-863-5487
bmbundergrad@psu.edu

http://bmb.psu.edu/about/copy_of_contact