Program Learning Objectives

• Collaboration and Communication:
 • Students will be able to:
 • demonstrate the ability to work in teams to solve biochemical problems
 • communicate in a variety of formal and informal ways to discuss biochemical data

• Core Concepts:
 • Students will be able to:
 • trace energy/matter transformation, storage, and mobilization in biological systems
 • explain how genetic information is exchanged and stored
 • recognize how changes in biological structures can have varying effects on function
 • describe how evolutionary processes are an integral part of the molecular life sciences
 • explain examples of how organisms maintain cellular and molecular homeostasis

• Process of Science:
 • Students will be able to:
 • develop a hypothesis, design and conduct appropriate experiments
 • analyze and interpret data using appropriate quantitative modeling and simulation tools
 • keep an accurate laboratory notebook
 • participate in the peer review/revision process

• Quantitative Reasoning and Data Science:
 • Students will be able to:
 • apply basic quantitative competencies such as algebra, probability, statistics, unit conversions, and fundamental biological equations
 • organize, summarize, and interpret quantitative data
 • find and analyze data from large databases

• Science and Society:
 • Students will be able to:
 • explore the impacts of scientific research on society and how society influences/relied on research to inform decision-making
 • evaluate the ethical implications of biochemical research
 • recognize ethical issues in a variety of settings

• Scientific Evidence Evaluation:
 • Students will be able to:
 • discriminate among scientific claims presented in a variety of sources based on the strength of evidence
 • find appropriate published scientific literature