You are interested in math and science but prefer spending time applying your skills in a laboratory or field setting as opposed to studying the theory behind these subjects in a classroom setting. If you like to take things apart, to see how they work, this may be for you. There is a greater emphasis on engineering applications while building an understanding of scientific theory.

Direct Admission to the Major

Incoming first-year students who meet the program admission requirements are admitted directly into the major. Admission restrictions may apply for change-of-major and/or change-of-campus students.

For more information about the admission process for this major, please send a request to the college, campus, or program contact (listed in the Contact tab).

Degree Requirements

For the Bachelor of Science degree in Electro-Mechanical Engineering Technology, a minimum of 130 credits is required:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education</td>
<td>45</td>
</tr>
<tr>
<td>Requirements for the Major</td>
<td>109-114</td>
</tr>
<tr>
<td>24 of the 45 credits for General Education are included in the Requirements for the Major. This includes: 6 credits of GQ courses; 9 credits of GN courses; 6 credits of GWS courses; 3 credits of GH or GS courses.</td>
<td></td>
</tr>
</tbody>
</table>

Requirements for the Major

To graduate, a student enrolled in the major must earn a grade of C or better in each course designated by the major as a C-required course, as specified by Senate Policy 82-44 (http://senate.psu.edu/policies-and-rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/#82-44).

Prescribed Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPET 211</td>
<td>Embedded Processors and DSP</td>
<td>3</td>
</tr>
<tr>
<td>EDSGN 100</td>
<td>Cornerstone Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>EET 105</td>
<td>Electrical Systems</td>
<td>3</td>
</tr>
<tr>
<td>EET 275</td>
<td>Introduction to Programmable Logic Controls</td>
<td>3</td>
</tr>
<tr>
<td>EGT 114</td>
<td>Spatial Analysis and Computer-Aided Drafting</td>
<td>2</td>
</tr>
<tr>
<td>EMET 100</td>
<td>Computation Tools for Engineering Synthesis</td>
<td>1</td>
</tr>
<tr>
<td>EMET 215</td>
<td>Manufacturing Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EMET 225</td>
<td>Applied Dynamics</td>
<td>2</td>
</tr>
<tr>
<td>EMET 325</td>
<td>Electric Drives</td>
<td>3</td>
</tr>
<tr>
<td>EMET 326</td>
<td>Mechanical Drives</td>
<td>3</td>
</tr>
<tr>
<td>EMET 350</td>
<td>Quality Control, Inspection, and Design</td>
<td>3</td>
</tr>
<tr>
<td>EMET 403</td>
<td>Electromechanical Design Project Preparation</td>
<td>1</td>
</tr>
<tr>
<td>EMET 405</td>
<td>Fluid Mechanics and Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>EMET 410</td>
<td>Automated Control Systems</td>
<td>4</td>
</tr>
<tr>
<td>EMET 440</td>
<td>Electro-Mechanical Project Design</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 202C</td>
<td>Effective Writing: Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>IET 101</td>
<td>Manufacturing Materials, Processes, and Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>
Students taking MATH 83 must take MATH 210 and MATH 211.
Both MATH 83 and MATH 140 require a grade of C or better.
Note that MATH 250 does not carry a C-requirement.

General Education

Connecting career and curiosity, the General Education curriculum provides the opportunity for students to acquire transferable skills necessary to be successful in the future and to thrive while living in interconnected contexts. General Education aids students in developing intellectual curiosity, a strengthened ability to think, and a deeper sense of aesthetic appreciation. These are requirements for all baccalaureate students and are often partially incorporated into the requirements of a program. For additional information, see the General Education Requirements (https://bulletins.psu.edu/undergraduate/general-education/baccalaureate-degree-general-education-program/) section of the Bulletin and consult your academic adviser.

The keystone symbol appears next to the title of any course that is designated as a General Education course. Program requirements may also satisfy General Education requirements and vary for each program.

Foundations (grade of C or better is required.)
- Quantification (GQ): 6 credits
- Writing and Speaking (GWS): 9 credits

Knowledge Domains
- Arts (GA): 6 credits
- Health and Wellness (GHW): 3 credits
- Humanities (GH): 6 credits
- Social and Behavioral Sciences (GS): 6 credits
- Natural Sciences (GN): 9 credits

Integrative Studies (may also complete a Knowledge Domain requirement)
- Inter-Domain or Approved Linked Courses: 6 credits

University Degree Requirements

First Year Engagement
All students enrolled in a college or the Division of Undergraduate Studies at University Park, and the World Campus are required to take 1 to 3 credits of the First-Year Seminar, as specified by their college First-Year Engagement Plan.

Other Penn State colleges and campuses may require the First-Year Seminar; colleges and campuses that do not require a First-Year Seminar provide students with a first-year engagement experience.

First-year baccalaureate students entering Penn State should consult their academic adviser for these requirements.

Cultures Requirement
6 credits are required and may satisfy other requirements
- United States Cultures: 3 credits
- International Cultures: 3 credits

Writing Across the Curriculum
3 credits required from the college of graduation and likely prescribed as part of major requirements.

Total Minimum Credits
A minimum of 120 degree credits must be earned for a baccalaureate degree. The requirements for some programs may exceed 120 credits.

IET 333 Engineering Economics for Technologists 2

Prescribed Courses: Require a grade of C or better

CMPET 117 Digital Electronics 3
CMPET 120 Digital Electronics Laboratory 1
EET 114 Electrical Circuits II 4
EET 118 Electrical Circuits Laboratory 1
EET 212W Op Amp and Integrated Circuit Electronics 4
EMET 222 Applied Mechanics 3
EMET 230 Computerized I/O Systems 3
EMET 330 Measurement Theory and Instrumentation 3
MET 111 Mechanics for Technology: Statics 3

Additional Courses
Select 3 credits of GH or GS of the following: 3
- ENGR 320Y Design for Global Society
- STS 200 Critical Issues in Science, Technology, and Society
- STS 235Z Ethics and the Design of Technology
- STS 245Z Globalization, Technology, and Ethics

Select 10-11 credits from: 10-11
- CAS 100A Effective Speech
- or CAS 100B Effective Speech
- MATH 83 Technical Calculus 2,3
- MATH 140 Calculus With Analytic Geometry I
- MATH 210 Calculus with Engineering Technology Applications
- or MATH 141 Calculus with Analytic Geometry II

Select 6-8 credits of GN courses from two of the following groups: 6-8

Group 1
- PHYS 150 Technical Physics I
- PHYS 211 General Physics: Mechanics
- PHYS 250 Introductory Physics I

Group 2
- PHYS 151 Technical Physics II
- PHYS 212 General Physics: Electricity and Magnetism
- PHYS 251 Introductory Physics II

Group 3
- CHEM 110 Chemical Principles I
- CHEM 111 and Experimental Chemistry I

Additional Courses: Require a grade of C or better

- MATH 250 Ordinary Differential Equations 4
- or MATH 211 Intermediate Calculus and Differential Equations with Applications

Select 5-6 credits of the following: 5-6
- MATH 22 College Algebra II and Analytic Geometry
- & MATH 26 and Plane Trigonometry
- MATH 40 Algebra, Trigonometry, and Analytic Geometry
- MATH 81 Technical Mathematics I
- & MATH 82 and Technical Mathematics II 1

Supporting Courses and Related Areas
Select 3-4 credits of science courses, in consultation with an adviser, from the approved department list
Select 6 credits of General Technical Elective courses, in consultation with an adviser, from the approved department list

1 Students taking MATH 81 and MATH 82 must take MATH 83.
Students should consult with their college or department adviser for information on specific credit requirements.

Quality of Work
Candidates must complete the degree requirements for their major and earn at least a 2.00 grade-point average for all courses completed within their degree program.

Limitations on Source and Time for Credit Acquisition
The college dean or campus chancellor and program faculty may require up to 24 credits of course work in the major to be taken at the location or in the college or program where the degree is earned. Credit used toward degree programs may need to be earned from a particular source or within time constraints (see Senate Policy 83-80 (http://senate.psu.edu/policies-and-rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/#83-80)). For more information, check the Suggested Academic Plan for your intended program.

Program Educational Objectives
The Electro-Mechanical Engineering Technology program is designed to provide a curriculum that prepares students to pursue a career in the industry and to develop in their profession. Due to their experience in the Electro-Mechanical Engineering Technology program, within few years of graduation, we expect our graduates to have the ability to:

1. Continue to develop and synthesize analytical skills in the specification, procurement, or integration of electromechanical systems.
2. Apply empirical skills in the operation, testing, or maintenance of electromechanical systems.
3. Collaborate effectively in project team activities through recognizing the global, societal, economical, and ethical contexts of their work.
4. Communicate persuasively through the preparation and delivery of technical and non-technical documentation and communications.

Student Outcomes
Graduates of the Electro-Mechanical Engineering Technology program should demonstrate:

1. An ability to apply knowledge, techniques, skills, and modern tools of mathematics, science, engineering, and technology to solve broadly-defined engineering problems appropriate to the discipline.
2. An ability to design systems, components, or processes meeting specified needs for broadly-defined engineering problems appropriate to the discipline.
3. An ability to apply written, oral, and graphical communication in broadly-defined technical and non-technical environments; and an ability to identify and use appropriate technical literature.
4. An ability to conduct standard tests, measurements, and experiments and to analyze and interpret the results to improve processes.
5. An ability to function effectively as a member or leader on a technical team.

Academic Advising
The objectives of the university’s academic advising program are to help advisees identify and achieve their academic goals, to promote their intellectual discovery, and to encourage students to take advantage of both in-and out-of class educational opportunities in order that they become self-directed learners and decision makers.

Both advisers and advisees share responsibility for making the advising relationship succeed. By encouraging their advisees to become engaged in their education, to meet their educational goals, and to develop the habit of learning, advisers assume a significant educational role. The advisee’s unit of enrollment will provide each advisee with a primary academic adviser, the information needed to plan the chosen program of study, and referrals to other specialized resources.

READ SENATE POLICY 32-00: ADVISING POLICY (https://senate.psu.edu/policies-and-rules-for-undergraduate-students/32-00-advising-policy/)

Berks
Marietta Scanlon
Program Coordinator, Assistant Teaching Professor
Gaige 219
Reading, PA 19610
610-396-6126
BKElecMechEng@psu.edu

Altoona
Jordan Bittner
Program Coordinator, Instructor of Engineering
Learning Resources Center 145
3000 Ivyside Park
Altoona, PA 16601
814-949-5304
jls5991@psu.edu

Fayette
Nathaniel Bohna, Ph.D.
Program Coordinator, Associate Teaching Professor in Engineering
2201 University Drive
301A Eberly Building
Lemont Furnace, PA 15456
724-430-4109
nab141@psu.edu

New Kensington
Joseph Cuiffi, Ph.D.
Program Coordinator, Assistant Teaching Professor in Engineering
3550 Seventh Street Rd.
New Kensington, PA 15068
724-334-6730
jdc167@psu.edu

York
Harley H. Hartman, P.E.
Program Coordinator, Assistant Teaching Professor in Engineering
Main Classroom Building, Room 35
York, PA 17403
717-771-4097
hhh2@psu.edu

Suggested Academic Plan
The suggested academic plan(s) listed on this page are the plan(s) that are in effect during the 2022-23 academic year. To access previous years’ suggested academic plans, please visit the archive (https://bulletins.psu.edu/undergraduate/archive/) to view the appropriate Undergraduate Bulletin edition (Note: the archive only contains suggested
Electro-Mechanical Engineering Technology, B.S. at Berks Campus

The course series listed below provides only one of the many possible ways to move through this curriculum. The University may make changes in policies, procedures, educational offerings, and requirements at any time. This plan should be used in conjunction with your degree audit (accessible in LionPATH as either an Academic Requirements or What If report). Please consult with a Penn State academic adviser on a regular basis to develop and refine an academic plan that is appropriate for you.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 15 or 30H (GWS)<sup>‡</sup></td>
<td>3</td>
<td>CAS 100A or 100B (GWS)<sup>‡</sup></td>
<td>3</td>
</tr>
<tr>
<td>MATH 22</td>
<td>3</td>
<td>MATH 83 (GQ)<sup>†</sup></td>
<td>4</td>
</tr>
<tr>
<td>MATH 26</td>
<td>3</td>
<td>EET 114<sup>‡</sup></td>
<td>4</td>
</tr>
<tr>
<td>EDSGN 100</td>
<td>3</td>
<td>EET 118<sup>‡</sup></td>
<td>1</td>
</tr>
<tr>
<td>EET 105</td>
<td>3</td>
<td>MET 111<sup>‡</sup></td>
<td>3</td>
</tr>
<tr>
<td>First Year Seminar</td>
<td>1</td>
<td>EMET 100</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 210 (GQ)<sup>†</sup></td>
<td>3</td>
<td>ENGL 202C (GWS)<sup>‡</sup></td>
<td>3</td>
</tr>
<tr>
<td>CMPET 117<sup>‡</sup></td>
<td>3</td>
<td>MATH 211<sup>†</sup></td>
<td>3</td>
</tr>
<tr>
<td>CMPET 120<sup>‡</sup></td>
<td>3</td>
<td>EET 275</td>
<td>3</td>
</tr>
<tr>
<td>EGT 114</td>
<td>2</td>
<td>IET 333</td>
<td>2</td>
</tr>
<tr>
<td>EMET 222<sup>‡</sup></td>
<td>3</td>
<td>General Education Course (GA or GH or GS)</td>
<td>3</td>
</tr>
<tr>
<td>IET 101</td>
<td>3</td>
<td>General Education Course (GA or GH or GS)</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EET 212W<sup>‡</sup></td>
<td>4</td>
<td>CMPET 211</td>
<td>3</td>
</tr>
<tr>
<td>EMET 225</td>
<td>2</td>
<td>EMET 325</td>
<td>3</td>
</tr>
<tr>
<td>EMET 230<sup>‡</sup></td>
<td>3</td>
<td>EMET 326</td>
<td>3</td>
</tr>
<tr>
<td>EMET 215</td>
<td>3</td>
<td>EMET 330<sup>‡</sup></td>
<td>3</td>
</tr>
<tr>
<td>PHYS 150 (GN)<sup>†</sup></td>
<td>3</td>
<td>PHYS 151 (GN)<sup>†</sup></td>
<td>3</td>
</tr>
<tr>
<td>STS 233Z (GH)<sup>†</sup></td>
<td>3</td>
<td>EMET 350</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMET 403</td>
<td>1</td>
<td>EMET 405</td>
<td>3</td>
</tr>
<tr>
<td>EMET 410</td>
<td>4</td>
<td>EMET 440</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 110 (GN)<sup>‡</sup></td>
<td>3</td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 111 (GN)<sup>†</sup></td>
<td>1</td>
<td>General Education Course (GA or GH or GS)</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
<td>General Education Course (GHW)</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Education Course

<table>
<thead>
<tr>
<th>(GA or GH or GS)</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Credits 133</td>
<td></td>
</tr>
</tbody>
</table>

* Course requires a grade of C or better for the major
† Course requires a grade of C or better for General Education
‡ Course is an Entrance to Major requirement
Course requires a grade of 'C' or better for the major

University Requirements and General Education Notes:

- US and IL are abbreviations used to designate courses that satisfy University Requirements (United States and International Cultures).
- W, M, X, and Y are the suffixes at the end of a course number used to designate courses that satisfy University Writing Across the Curriculum requirement.
- GWS, GQ, GHW, GN, GA, GH, and GS are abbreviations used to identify General Education program courses. General Education includes Foundations (GWS and GQ) and Knowledge Domains (GHW, GN, GA, GH, GS, and Integrative Studies). Foundations courses (GWS and GQ) require a grade of ‘C’ or better.
- Integrative Studies courses are required for the General Education program. N is the suffix at the end of a course number used to designate an Inter-Domain course and Z is the suffix at the end of a course number used to designate a Linked course.

College Notes:

- Technical Elective: Choose two (2) from the following: CMPSC 121, 200, 201, EMET 394, 402, 430, 432, 495, 496, ENGR 310, IST 402, 431, 432, MATH 220, 231, ME 300, MGMT 301, MKTG 301, or STAT 200.

Course Offerings:

- Fall Only: MATH 210, CMPET 117, CMPET 120, EGT 114, EMET 222, MCHT 214, EET 212W, EMET 230, EMET 350, PHYS 150, STS 233, EMET 403 (and Summers), EMET 410 (and Summers), IET 333
- Spring Only: EET 114 (and Summers), EET 118 (and Summers), MET 111, MATH 211, EET 275, IET 215, IET 216, CMPET 211, EMET 325, EMET 326, EMET 330, PHYS 151

Career Paths

The inclusion of both electrical and mechanical coursework in the EMET program makes our students highly marketable to employers.

EMET graduates may pursue engineering work that entails design, prototyping, testing, operation, or maintenance of equipment. Others may work in the areas of research and development, quality control, inspection of procedures and processes, manufacturing, or sales and service. These careers could be in a variety of industries including aerospace, agriculture, automotive, communications, computers, construction, energy, pharmaceuticals, plastics, or robotics to name a few.
MORE INFORMATION ABOUT POTENTIAL CAREER OPTIONS FOR GRADUATES OF THE ELECTRO-MECHANICAL ENGINEERING PROGRAM (http://career.engr.psu.edu/)

Opportunities for Graduate Studies

Students may choose to further their engineering education through graduate school. EMET graduates are prepared to continue their education into technical or professional Master's Degree programs. Graduate program admissions requirements vary by program and institution. Students intending to pursue this academic path are encouraged to investigate intended programs of interest early in their studies to tailor their course choices during their undergraduate studies.

Since the EMET program is ABET ETAC-accredited, EMET graduates are candidates to sit for the Fundamental of Engineering (FE) Exam, the first step in the engineering licensure process. Acceptable accreditation standards vary from state to state for professional licensure, so students must verify their state's requirements.

MORE INFORMATION ABOUT OPPORTUNITIES FOR GRADUATE STUDIES (http://www.engr.psu.edu/students/grad-prospective/default.aspx)

Accreditation

Professional Licensure/Certification

Many U.S. states and territories require professional licensure/certification to be employed. If you plan to pursue employment in a licensed profession after completing this program, please visit the Professional Licensure/Certification Disclosures by State (https://psu.edu/state-licensure-disclosures/) interactive map.

Contact

Berks
EBC DIVISION
Gaige Building
Reading, PA 19610
610-396-6126
BKElecMechEng@psu.edu

http://berks.psu.edu/bs-electro-mechanical-engineering-technology (http://berks.psu.edu/bs-electro-mechanical-engineering-technology/)

Altoona
DIVISION OF BUSINESS, ENGINEERING, AND INFORMATION SCIENCES AND TECHNOLOGY
Learning Resources Center 145
3000 Ivyside Park
Altoona, PA 16601
814-949-5304
jls5991@psu.edu

http://altoona.psu.edu/academics/bachelors-degrees/electro-mechanical-engineering-technology/request-information (http://altoona.psu.edu/academics/bachelors-degrees/electro-mechanical-engineering-technology/request-information/)

Fayette
ELECTRO-MECHANICAL ENGINEERING TECHNOLOGY

2201 University Drive
Lemont Furnace, PA 15456
724-430-4109
nab141@psu.edu

https://fayette.psu.edu/academics/baccalaureate/electro-mechanical-engineering-technology (https://fayette.psu.edu/academics/baccalaureate/electro-mechanical-engineering-technology/)

New Kensington
ELECTRO-MECHANICAL ENGINEERING TECHNOLOGY
3550 Seventh Street Rd.
New Kensington, PA 15068
724-334-6730
jdc167@psu.edu

https://newkensington.psu.edu/4-year-electro-mechanical-engineering-technology (https://newkensington.psu.edu/4-year-electro-mechanical-engineering-technology/)

University Park
SCHOOL OF ENGINEERING DESIGN, TECHNOLOGY, AND PROFESSIONAL PROGRAMS
213 Hammond Building
University Park, PA 16802
814-865-2952
http://www.sedtapp.psu.edu

York
ELECTRO-MECHANICAL ENGINEERING TECHNOLOGY
1031 Edgecomb Avenue
York, PA 17403
717-771-4097
hhh2@psu.edu

https://york.psu.edu/academics/baccalaureate/electro-mechanical-engineering-technology (https://york.psu.edu/academics/baccalaureate/electro-mechanical-engineering-technology/)