MECHATRONICS, MINOR

Requirements for a minor may be completed at any campus location offering the specified courses for the minor. Students may not change from a campus that offers their major to a campus that does not offer their major for the purpose of completing a minor.

Program Description

Mechatronics is an interdisciplinary engineering field that combines mechanical, electrical, electronics, control and computer engineering. The field deals with the design, development, control, and application of advanced electro-mechanical systems. Such systems will include sensors, actuators, microprocessors, controllers, software, computer, and mechanical hardware components. The purpose of the minor is to provide undergraduate students an opportunity to take relevant courses that will sequentially build on their knowledge and understanding of mechatronic systems and to provide recognition to those who do so.

What is Mechatronics?

Mechatronics is a multidisciplinary field of engineering that combines mechanical, electrical, electronics, computer, systems and controls engineering, and focuses on theory and applications of these areas. The field deals with the design, development, control, and application of advanced electro-mechanical systems. Such systems will include sensors, actuators, microprocessors, controllers, software, computer, and mechanical hardware components. The applications of mechatronics engineering include medical, defense, manufacturing, robotics, automotive, and distributed systems and smart consumer products. Mechatronics engineers theorize and develop new solutions to industrial problems using mechanical, electrical and electronic systems and computer technology in addition to designing and building completely new products by integrating various technologies. They may also design and develop newer automated systems by integrating to improve existing process. Recent advances in artificial intelligence and machine learning also provide interesting opportunities for mechatronics engineers to solve many complex real world problems.

You Might Like This Program If...

- You like creative problem-solving and analysis.
- You like understanding how robotics or automation work.
- You like the idea of using mathematics to model and analyze complex systems.
- You work well within collaborative, multidisciplinary teams.

Program Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for the Minor</td>
<td>19-22</td>
</tr>
<tr>
<td>Requirements for the Minor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 210</td>
<td>Circuits and Devices</td>
<td>4</td>
</tr>
</tbody>
</table>

Additional Courses: Require a grade of C or better

Select one of the following: 3

- CMPSC 121 Introduction to Programming Techniques
- CMPSC 200 Programming for Engineers with MATLAB
- CMPSC 201 Programming for Engineers with C++

Select 6-8 credits of the following: 1 6-8

Group A

- CMPEN 270 Digital Design: Theory and Practice
- or CMPEN 2: Introduction to Digital Systems
- or CMPEN 27 and Digital Design Laboratory

Group B

- ME 345 Instrumentation, Measurements, and Statistics
- or ME 345W Instrumentation, Measurements, and Statistics
- ME 357 System Dynamics

Select 6-7 credits of the following (one course each from Category I and II): 6-7

Category I

- CMPEN 472 Microprocessors
- CMPEN 472 Microprocessors and Embedded Systems
- EE 485 Energy Systems and Conversion
- EE 487 Electric Machinery and Drives
- ME 445 Microcomputer Interfacing for Mechanical Engineers

Category II

- EE 483 Introduction to Automation and Robotics Systems
- ME 455 Automatic Control Systems
- ME 456 Introduction to Robotics

1 Students graduating with a ME major should take 7-8 credits from Group A; students graduating with an EE major should take 7 credits from group B; all other students should take 6-8 credits from both A and B.

Academic Advising

The objectives of the university's academic advising program are to help advisees identify and achieve their academic goals, to promote their intellectual discovery, and to encourage students to take advantage of both in-and out-of-class educational opportunities in order that they become self-directed learners and decision makers.

Both advisers and advisees share responsibility for making the advising relationship succeed. By encouraging their advisees to become engaged in their education, to meet their educational goals, and to develop the habit of learning, advisers assume a significant educational role. The advisee's unit of enrollment will provide each advisee with a primary academic adviser, the information needed to plan the chosen program of study, and referrals to other specialized resources.

READ SENATE POLICY 32-00: ADVISING POLICY (http://senate.psu.edu/policies-and-rules-for-undergraduate-students/32-00-advising-policy)

Harrisburg

Amit Banerjee, Ph.D.
Program Chair
Olmsted Building, W239
Middletown, PA 17057
717-948-6661
aub25@psu.edu

Contact

Harrisburg
SCHOOL OF SCIENCE, ENGINEERING, AND TECHNOLOGY
Olmsted Building, W239
Middletown, PA 17057
717-948-4348
szr514@psu.edu

http://harrisburg.psu.edu/science-engineering-technology/mechatronics-and-mechatronics-technology/mechatronics-minor