MINING ENGINEERING, B.S.

Begin Campus: Any Penn State Campus
End Campus: University Park

Program Description
Mining contributes to nearly 15 percent of the U.S. and 25 percent of the global economy. Mined products are significant and critical inputs to food production, manufacturing, construction, and electricity supply, and each year every person in the U.S. requires an average of 38,500 pounds of new minerals to equip and power their day-to-day activities. Over 14,000 mines distributed throughout the U.S. supply the majority of these mined products.

The Penn State Mining Engineering program prepares students for a career in the industrial minerals, metals, and energy industries that sustain the domestic and global economies. Importantly, the program provides an emphasis on sustainable mining through integration of environmental health and safety, and societal responsibility principles in the design and operation of mineral enterprises.

Graduates of the program will be prepared to work domestically or internationally to develop and operate mines; or to work in supporting activities including engineering consulting, banking, equipment development and supply, regulatory enforcement, and research. This is accomplished primarily through the curriculum, but is enhanced by an internship program, which allows qualified students to obtain practical experience through structured employment opportunities in the private and public sectors.

The curriculum is built on the foundation of mathematics, science, and general education common to engineering majors at Penn State. The courses specific to this major are designed and sequenced to provide an appropriate blend of theory, application, and design. The required courses help to provide the enabling skills for graduates to work in any facet of the vast minerals industry, and technical electives allow for in-depth study of more specialized topics. The general education opportunities are sufficiently broad and diverse in nature and scope to enable the student to tailor the educational experience to particular interests, backgrounds, and expected roles in society.

Student-Trainee Program
An internship program and a five-year work-study plan are available to incoming students in Mining Engineering. Numerous mining and manufacturing companies, as well as government agencies, cooperate with the University to offer structured employment opportunities during the student’s academic career. In addition to earning significant funds to help finance their education, these opportunities provide valuable practical and professional experience prior to graduation. The internships normally take place in the summer, and the B.S. degree can be earned in four years. The work-study plan consists of alternating six-month periods of employment and schooling, and requires five years to earn the B.S. degree. Additional information can be obtained from the department.

What is Mining Engineering?
Mining engineers extract materials required for the survival of society while being stewards of the environment. They solve unique engineering challenges. Their workplace can often be in an out-of-the-office setting such as a surface or underground mine—or an office setting using cutting-edge technology and software simulations to plan solutions to problems. Worldwide, mining companies extract more than 100 different commodities that are used in nearly every industrial sector. There’s a saying: if it can’t be grown, it has to be mined! The United Nations has recognized 17 goals as a part of their “2030 Agenda for Sustainable Development.” Minerals, including 50 identified as “critical” by the US government, will be instrumental in achieving several of these goals. These minerals are required for several applications, including clean energy transition, aerospace, defense, etc. A mining engineer thus stays at the forefront of the economy, environment, and society.

You Might Like This Program If...
- You want to be instrumental in the energy transition and sustainable development goals.
- You want to work in an out-of-the-office setting.
- You are a “hands-on” problem solver.
- You want to apply different engineering disciplines to your problem solving, and prefer not to be focused on just one.
- You want to join a high-tech industry that provides the basic building blocks, minerals, and other materials used in nearly every industry today.

Entrance to Major
In order to be eligible for entrance to this major, a student must:
1. attain at least a C (2.00) cumulative grade-point average for all courses taken at the University; and
2. have at least third-semester classification (https://www.registrar.psu.edu/enrollment/semester-classification.cfm).

READ SENATE POLICY 37-30: ENTRANCE TO AND CHANGES IN MAJOR PROGRAMS OF STUDY (https://senate.psu.edu/policies-and-rules-for-undergraduate-students/37-00-entrance-to-a-college-or-major/)

Degree Requirements
For the Bachelor of Science degree in Mining Engineering, a minimum of 131 credits is required:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education</td>
<td>45</td>
</tr>
<tr>
<td>Requirements for the Major</td>
<td>113</td>
</tr>
<tr>
<td>27 of the 45 credits for General Education are included in the Requirements for the Major. This includes: 9 credits of GN courses; 6 credits of GQ courses; 3 credits of GS courses; 6 credits of GWS courses; 3 credits of GH courses.</td>
<td></td>
</tr>
</tbody>
</table>

Requirements for the Major
To graduate, a student enrolled in the major must earn a grade of C or better in each course designated by the major as a C-required course, as specified by Senate Policy 82-44 (https://senate.psu.edu/policies-and-rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/#82-44).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>Chemical Principles I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 111</td>
<td>Experimental Chemistry I</td>
<td>1</td>
</tr>
<tr>
<td>ECON 102</td>
<td>Introductory Microeconomic Analysis and Policy</td>
<td>3</td>
</tr>
<tr>
<td>EDSGN 100</td>
<td>Cornerstone Engineering Design</td>
<td>3</td>
</tr>
</tbody>
</table>
EE 211 Electrical Circuits and Power Distribution 3
EMCH 210 Statics and Strength of Materials 5
EME 460 Geo-resource Evaluation and Investment Analysis 3
EMSC 100S Earth and Mineral Sciences First-Year Seminar 3
EMSC 201 Earth Materials 4
MATH 140 Calculus With Analytic Geometry I 4
MATH 141 Calculus with Analytic Geometry II 4
MATH 250 Ordinary Differential Equations 3
MNG 223 Mineral Land and Mine Surveying 2
MNG 331 Rock Mechanics 3
MNG 404 Mine Materials Handling Systems 2
MNG 410 Underground Mining 3
MNG 411 Mine Systems Engineering 2
MNG 422 Mine Ventilation and Air Conditioning 3
PHYS 211 General Physics: Mechanics 4
PHYS 212 General Physics: Electricity and Magnetism 4
PHYS 213 General Physics: Fluids and Thermal Physics 2
STAT 301 3

Prescribed Courses: Require a grade of C or better
GEOSC 1 Physical Geology 3
MNG 230 Introduction to Mining Engineering 3
MNG 441 Surface Mining Systems and Design 3
MNG 451W Mining Engineering Project 4
MNPR 301 Elements of Mineral Processing 3
MNPR 413 Mineral Processing Laboratory 1

Additional Courses
Select 23 credits, one course from each category: 23

A.
ENGL 15 Rhetoric and Composition
ENGL 30H Honors Rhetoric and Composition

B.
PHIL 103 Ethics
PHIL 106 Business Ethics
PHIL 107 Philosophy of Technology
PHIL/STS 233 Ethics and the Design of Technology

C.
CMPSC 201 Programming for Engineers with C++
CMPSC 202

D.
MATH 220 Matrices
MATH 231 Calculus of Several Variables

E.
EMCH 212 Dynamics
EMCH 212H Dynamics

F.
EME 301 Thermodynamics in Energy and Mineral Engineering
ME 300 Engineering Thermodynamics I

G.
CE 360 Fluid Mechanics
EME 303 Fluid Mechanics in Energy and Mineral Engineering

H.
GEOSC 470W Introduction to Field Geology
MNG 470

Supporting Courses and Related Areas
Select 6 credits in consultation with adviser (students may apply 6 credits of ROTC) 6

1 The following substitutions are allowed for students attending campuses where the indicated course is not offered: CAS 100 can be substituted for EMSC 100S.

General Education
Connecting career and curiosity, the General Education curriculum provides the opportunity for students to acquire transferable skills necessary to be successful in the future and to thrive while living in interconnected contexts. General Education aids students in developing intellectual curiosity, a strengthened ability to think, and a deeper sense of aesthetic appreciation. These are requirements for all baccalaureate students and are often partially incorporated into the requirements of a program. For additional information, see the General Education Requirements (https://bulletins.psu.edu/undergraduate/general-education/baccalaureate-degree-general-education-program/) section of the Bulletin and consult your academic adviser.

The keystone symbol appears next to the title of any course that is designated as a General Education course. Program requirements may also satisfy General Education requirements and vary for each program.

Foundations (grade of C or better and Inter-Domain courses do not meet this requirement.)
- Quantification (GQ): 6 credits
- Writing and Speaking (GWS): 9 credits

Breadth in the Knowledge Domains (Inter-Domain courses do not meet this requirement.)
- Arts (GA): 3 credits
- Health and Wellness (GHW): 3 credits
- Humanities (GH): 3 credits
- Social and Behavioral Sciences (GS): 3 credits
- Natural Sciences (GN): 3 credits

Integrative Studies
- Inter-Domain Courses (Inter-Domain): 6 credits

Exploration
- GN, may be completed with Inter-Domain courses: 3 credits
- GA, GH, GN, GS, Inter-Domain courses. This may include 3 credits of World Language course work beyond the 12th credit level or the requirements for the student’s degree program, whichever is higher: 6 credits

University Degree Requirements
First Year Engagement
All students enrolled in a college or the Division of Undergraduate Studies at University Park, and the World Campus are required to take 1 to 3 credits of the First-Year Seminar, as specified by their college First-Year Engagement Plan.
Other Penn State colleges and campuses may require the First-Year Seminar; colleges and campuses that do not require a First-Year Seminar provide students with a first-year engagement experience.

First-year baccalaureate students entering Penn State should consult their academic adviser for these requirements.

Cultures Requirement
6 credits are required and may satisfy other requirements
- United States Cultures: 3 credits
- International Cultures: 3 credits

Writing Across the Curriculum
3 credits required from the college of graduation and likely prescribed as part of major requirements.

Total Minimum Credits
A minimum of 120 degree credits must be earned for a baccalaureate degree. The requirements for some programs may exceed 120 credits. Students should consult with their college or department adviser for information on specific credit requirements.

Quality of Work
Candidates must complete the degree requirements for their major and earn at least a 2.00 grade-point average for all courses completed within their degree program.

Limitations on Source and Time for Credit Acquisition
The college dean or campus chancellor and program faculty may require up to 24 credits of course work in the major to be taken at the location or in the college or program where the degree is earned. Credit used toward degree programs may need to be earned from a particular source or within time constraints (see Senate Policy 83-80 (https://senate.psu.edu/policies-and-rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/#83-80)). For more information, check the Suggested Academic Plan for your intended program.

Integrated B.S. in Mining Engineering and M.S. in Energy and Mineral Engineering
Requirements for the Integrated B.S. in Mining Engineering and M.S. in Energy and Mineral Engineering can be found in the Graduate Bulletin (https://bulletins.psu.edu/graduate/programs/majors/energy-mineral-engineering/#integratedundergradgradprogramtext).

Program Educational Objectives
1. Within three to five years after graduation students are expected to be advancing in their career in the minerals industry and adapting to new situations and emerging problems, through the application of general engineering-science skills and the core technical problem-solving and design practices of the mining engineering profession, with an understanding of the need for lifelong learning.
2. Within one to three years after graduation, students are expected to be communicating effectively.
3. Within one to three years after graduation, students are expected to be functioning effectively as individuals or as members of teams.
4. Upon graduation, students are expected to demonstrate an understanding of the importance of mining to society, realizing that, in contemporary society, attention to safety and health, responsibility to the environment, and ethical behavior are required without exception.
5. Students are expected to prepare for and attain licensure as a Professional Engineer after graduation, if so desired.

Student Outcomes
Student outcomes describe what students are expected to know and be able to do by the time of graduation. The Mining Engineering program is designed to enable students to:

1. Identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. Communicate effectively with a range of audiences.
4. Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. Acquire and apply new knowledge as needed, using appropriate learning strategies.

Academic Advising
The objectives of the university’s academic advising program are to help advisees identify and achieve their academic goals, to promote their intellectual discovery, and to encourage students to take advantage of both in-and out-of-class educational opportunities in order that they become self-directed learners and decision makers.

Both advisers and advisees share responsibility for making the advising relationship succeed. By encouraging their advisees to become engaged in their education, to meet their educational goals, and to develop the habit of learning, advisers assume a significant educational role. The advisee’s unit of enrollment will provide each advisee with a primary academic adviser, the information needed to plan the chosen program of study, and referrals to other specialized resources.

READ SENATE POLICY 32-00: ADVISING POLICY (https://senate.psu.edu/policies-and-rules-for-undergraduate-students/32-00-advising-policy/)

University Park
Sekhar Bhattacharyya, Ph.D., P.E., M.B.A.
Chair of Mining Engineering Program
126A Hosler Building
University Park, PA 16802
814-863-7606
sxb1029@psu.edu

Samantha Suk
Academic Adviser
101A Hosler Building
University Park, PA 16802
814-867-5271
sjs68@psu.edu
Suggested Academic Plan

The suggested academic plan(s) listed on this page are the plan(s) that are in effect during the 2023-24 academic year. To access previous years’ suggested academic plans, please visit the archive (https://bulletins.psu.edu/undergraduate/archive/) to view the appropriate Undergraduate Bulletin edition (Note: the archive only contains suggested academic plans beginning with the 2018-19 edition of the Undergraduate Bulletin).

Mining Engineering, B.S. at University Park Campus

The course series listed below provides only one of the many possible ways to move through this curriculum. The University may make changes in policies, procedures, educational offerings, and requirements at any time. This plan should be used in conjunction with your degree audit (accessible in LionPATH as either an academic plan or What If report). Please consult with a Penn State academic adviser on a regular basis to develop and refine an academic plan that is appropriate for you.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140 or 140G (GQ)††</td>
<td>4</td>
<td>MATH 141 or 141G (GO)††</td>
<td>4</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>CHEM 110 (GN)†</td>
<td>3</td>
<td>CMPSC 200, 201, or 203</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CHEM 111 (GN)†</td>
<td>1</td>
<td>ENGL 15, 30H, or ESL 15 (GWS)††</td>
<td>3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>EMSC 100S (or CAS 100 by substitution) (GWS)††</td>
<td>3</td>
<td>PHYS 211 (GN)†</td>
<td>4</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>EDSGN 100</td>
<td>3</td>
<td>PHIL 103, 106, 107, or 233 (GH)†</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ECON 102 (GS)†</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 212 (GN)†</td>
<td>4</td>
<td>PHYS 213</td>
<td>2</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>EMCH 210</td>
<td>5</td>
<td>EMCH 212</td>
<td>3</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>MNG 223 or CE 209</td>
<td>2</td>
<td>EME 301 or ME 201</td>
<td>3</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>MATH 250</td>
<td>3</td>
<td>MATH 220 or 231</td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>GEOSC 1†</td>
<td>3</td>
<td>EME 210 or STAT 401</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MNG 230†</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 211</td>
<td>3</td>
<td>MNPR 301*</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>GEOSC 201</td>
<td>4</td>
<td>MNG 422</td>
<td>3</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>MNG 404</td>
<td>2</td>
<td>MNG 331</td>
<td>3</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>EME 460 or MNG 412</td>
<td>3</td>
<td>MNG 441†</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>EME 303</td>
<td>3</td>
<td>ENGL 202C (GWS)††</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>General Education Health and Wellness (GHW)</td>
<td>1.5</td>
<td>General Education Knowledge Domain</td>
<td>3</td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNG 411</td>
<td>2</td>
<td>MNG 451W (Part 2) (Writing across the curriculum)*</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MNG 410</td>
<td>3</td>
<td>General Education Knowledge Domain</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

University Requirements and General Education Notes:

US and IL are abbreviations used to designate courses that satisfy Cultural Diversity Requirements (United States and International Cultures).

W, M, X, and Y are the suffixes at the end of a course number used to designate courses that satisfy University Writing Across the Curriculum requirement.

General Education includes Foundations (GWS and GQ), Knowledge Domains (GH, GN, GA, GH, GS) and Integrative Studies (Inter-domain) requirements. N or Q (Honors) is the suffix at the end of a course number used to help identify an Inter-domain course, but the inter-domain attribute is used to fill audit requirements. Foundations courses (GWS and GQ) require a grade of 'C' or better.

All incoming Schreyer Honors College first-year students at University Park will take ENG 137H/CAS 137H in the fall semester and ENG 138T/CAS 138T in the spring semester. These courses carry the GWS designation and satisfy a portion of that General Education requirement. If the student’s program prescribes GWS these courses will replace both ENG 15/ENG 30H and CAS 100A/CAS 100B/CAS 100C. Each course is 3 credits.

1. Students who begin their studies at non-UP locations and/or join the college after their first year should substitute CAS 100, CAS 100A, CAS 100B, or CAS 100C (GWS) for EMSC 100S (GWS). EMSC 100S Earth and Mineral Sciences First year Seminar (3) is a required course only for students who begin their studies at UP in the College of Earth and Mineral Sciences.

2. Approved Technical Electives for the MNGE major can be found at the department website: https://www.eme.psu.edu/approved-tech-electives-mnge. Mining technical electives may be substitute with up to 6 credits ROTC.

Advising Notes:

To enter the major, students need a minimum 2.00 grade point average and third semester standing.
Courses required for the major may be offered fall semester only, spring semester only, or both fall and spring semesters. Consult with your adviser and department to discuss your academic progress and course sequencing.
Mining Engineering, B.S. at Commonwealth Campuses

The course series listed below provides only one of the many possible ways to move through this curriculum. The University may make changes in policies, procedures, educational offerings, and requirements at any time. This plan should be used in conjunction with your degree audit (accessible in LionPATH as either an Academic Requirements or What If report). Please consult with a Penn State academic adviser on a regular basis to develop and refine an academic plan that is appropriate for you.

First Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ECON 102 (GS)†</td>
<td>CHEM 110 (GN)†</td>
</tr>
<tr>
<td>3</td>
<td>ENGL 15, 30H, or ESL 15 (GWS)††</td>
<td>CHEM 111 (GN)†</td>
</tr>
<tr>
<td>3</td>
<td>PHYS 211 (GN)†</td>
<td>ENGL 15, 30H, or ESL 15 (GWS)††</td>
</tr>
<tr>
<td>3</td>
<td>PHIL 103, 106, 107, or 233 (GH)†</td>
<td>EDSSN 100</td>
</tr>
</tbody>
</table>

General Education

Knowledge Domain

<table>
<thead>
<tr>
<th>Credits</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17

Second Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>EMCH 213 (Take EMCH 211 and EMCH 213 in place of EMCH 210)</td>
<td>PHYS 212 (GN)†</td>
</tr>
<tr>
<td>3</td>
<td>EMCH 213 (Take EMCH 211 and EMCH 213 in place of EMCH 210)</td>
<td>EMCH 211</td>
</tr>
<tr>
<td>2</td>
<td>PHYS 213</td>
<td>MATH 220 or 231</td>
</tr>
<tr>
<td>3</td>
<td>ENGL 202C (GWS)††</td>
<td>CAS 100, CAS 100A, CAS 100B, or CAS 100C (GWS)††</td>
</tr>
<tr>
<td>3</td>
<td>MATH 250</td>
<td>General Education Knowledge Domain</td>
</tr>
<tr>
<td>3</td>
<td>MATH 250</td>
<td>General Education Knowledge Domain</td>
</tr>
<tr>
<td>3.5</td>
<td>MNG 230 (online)*</td>
<td>General Education Health and Wellness (GHW)</td>
</tr>
</tbody>
</table>

16.5

Third Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>MNPR 301*</td>
<td>GEOSC 1†</td>
</tr>
<tr>
<td>3</td>
<td>MNG 422</td>
<td>MNG 404</td>
</tr>
<tr>
<td>3</td>
<td>MNG 331</td>
<td>EME 303</td>
</tr>
<tr>
<td>3</td>
<td>MNG 441†</td>
<td>MNG 223 or CE 209</td>
</tr>
<tr>
<td>3</td>
<td>GEOSC 201</td>
<td>EME 301</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>EME 460 or MNG 412</td>
</tr>
</tbody>
</table>

16

Fourth Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MNG 411</td>
<td>MNG 411</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>MNG 451W (Part 2) (Writing across the curriculum)†</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>MNG 410</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>MNG 451W (Part 1) (Writing across the curriculum)†</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>MNG Technical Elective from Approved Department List2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>GEOSC 470W</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>MNG Technical Elective from Approved Department List2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>GEOSC 470W</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>GEOSC 470W</td>
</tr>
</tbody>
</table>

17

Total Credits 132

<table>
<thead>
<tr>
<th>Credits</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 General Education Health and Wellness (GHW)</td>
<td>MNPR 413*</td>
</tr>
<tr>
<td>3</td>
<td>EME 210 or STAT 401</td>
<td>EME 210 or STAT 401</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5

University Requirements and General Education Notes:

US and IL are abbreviations used to designate courses that satisfy Cultural Diversity Requirements (United States and International Cultures).

W, M, X, and Y are the suffixes at the end of a course number used to designate courses that satisfy University Writing Across the Curriculum requirement.

General Education includes Foundations (GWS and GQ), Knowledge Domains (GHW, GN, GA, GH, GS) and Integrative Studies (Inter-domain) requirements. N or Q (Honors) is the suffix at the end of a course number used to help identify an Inter-domain course, but the inter-domain attribute is used to fill audit requirements. Foundations courses (GWS and GQ) require a grade of ‘C’ or better.

1 Students who begin their studies at non-UP locations and/or join the college after their first year should substitute CAS 100, CAS 100A, CAS 100B, or CAS 100C (GWS) for EMSC 100S (GWS). EMSC 100S Earth and Mineral Sciences First year Seminar (3) is a required course only for students who begin their studies at UP in the College of Earth and Mineral Sciences.

2 Approved Technical Electives for the MNGE major can be found at the department website: https://www.eme.psu.edu/approved-tech-electives-mnge. (https://www.eme.psu.edu/approved-tech-electives-mnge/) Mining technical electives may be substitute with up to 6 credits ROTC.

Advising Notes:

To enter the major, students need a minimum 2.00 grade point average and third semester standing.

Courses required for the major may be offered fall semester only, spring semester only, or both fall and spring semesters. Consult with your adviser and department to discuss your academic progress and course sequencing.

Career Paths

The demand for mining engineers routinely exceeds the supply, and our graduates often have a choice of career paths.

Careers

Companies that actively mine are the largest employer, and seek graduates for production, engineering, and management-trainee positions. Manufacturers of mining equipment employ design and application engineers from our program, as do consulting engineering firms. Government agencies focused on safety, the environment, and research employ many mining engineers. Some are employed in rather
unexpected places including banks that finance mining projects and the military. Internships are an important part of the undergraduate program experience, and many of our students complete two or three summer internships with mining companies.

MORE INFORMATION ABOUT POTENTIAL CAREER OPTIONS FOR GRADUATES OF THE MINING ENGINEERING PROGRAM (https://www.eme.psu.edu/recruiting-careers/)

Opportunities for Graduate Studies
A relatively small number of mining engineering graduates pursue graduate education; but doing so adds additional career opportunities at government and private research labs, and in academia. Often underappreciated, however, is that broadening and deepening the level of technical skills is valuable in the engineering and production career paths in addition to the obvious value for a career in research. In this regard, developing specialties in a particular facet of mining engineering or expanding into interdisciplinary areas can be particularly rewarding. Some mining engineering graduates pursue graduate degrees in law or business administration.

MORE INFORMATION ABOUT OPPORTUNITIES FOR GRADUATE STUDIES (https://www.eme.psu.edu/graduate/)

Professional Resources
• Mining Society Student Chapter (https://www.eme.psu.edu/undergraduate/undergraduate-resources/student-organizations/)
• International Society of Explosives Engineers Student Chapter (https://www.eme.psu.edu/undergraduate/undergraduate-resources/student-organizations/)
• The Society for Mining, Metallurgy & Exploration (https://www.smenet.org)
• National Mining Association (https://nma.org)
• The American Institute of Mining, Metallurgical and Petroleum Engineers (https://aimehq.org)
• International Society of Explosives Engineers (https://isee.org)
• The National Stone, Sand and Gravel Association (https://www.nssga.org)

Accreditation
The Bachelor of Science in Mining Engineering at University Park is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the General Criteria and the Mining Engineering Program Criteria.

Professional Licensure/Certification
Many U.S. states and territories require professional licensure/certification to be employed. If you plan to pursue employment in a licensed profession after completing this program, please visit the Professional Licensure/Certification Disclosures by State (https://www.psu.edu/state-licensure-disclosures/) interactive map.

Contact
University Park
JOHN AND WILLIE LEONE FAMILY DEPARTMENT OF ENERGY AND MINERAL ENGINEERING
113 Hosler Building
University Park, PA 16802
814-865-3437