PETROLEUM AND NATURAL GAS ENGINEERING, B.S.

Begin Campus: Any Penn State Campus
End Campus: University Park

Program Description
The undergraduate curriculum in Petroleum and Natural Gas Engineering has been designed to equip the student with the fundamentals necessary to achieve lifelong professional growth. Graduates are prepared to enter both the private and public sectors as petroleum and natural gas engineers or to pursue further education at the graduate level.

The courses are structured to serve as a melting pot for theory, application to case studies, and engineering project design. This enables the student to appreciate and understand that a successful engineering design project requires a sound theoretical foundation, experimentation and engineering judgment. The thrust of the program structure emphasizes the fundamentals of mathematics and earth and engineering sciences and integrates them in application to traditional petroleum and natural gas engineering topics. Design projects are required throughout the curriculum. Execution of these projects requires an amalgamation of problem formulation strategies, testing of alternative design methodologies, feasibility studies, and economic and environmental considerations. Graduates of the program are expected to perform in various facets of the petroleum industry including drilling, production, evaluation, transportation, and storage. The petroleum and natural gas engineering faculty and staff are committed to an interactive teaching and learning environment to ensure that the student is an active participant in the learning process. General education opportunities are sufficiently broad and diverse in scope to enable the student to tailor the educational experience to particular interests, background, and expected role in society.

What is Petroleum and Natural Gas Engineering?
Petroleum and Natural Gas Engineering is a field of engineering related to the production of hydrocarbon resources, which can be either crude oil or natural gas. As such, petroleum and natural gas engineers predominantly work in the upstream sector of the oil and energy industries, which comprises exploration, field development, well drilling, and production well optimization activities. Once oil and gas are discovered, petroleum engineers determine optimum drilling methods, implement drilling and well completion plans, monitor and manage production operations, and design reservoir development strategies. Petroleum and natural gas engineers have the responsibility of providing engineering solutions that consider the impact in global, economic, environmental, and societal contexts. Petroleum and natural gas engineers work closely with geoscientists and other science and technology specialists. They are also well suited to solve complex problems in geothermal energy extraction, geological carbon sequestration, and environmental remediation of soil, groundwater, and other geologic media.

You Might Like This Program If...
- You enjoy combining disciplines such as geology, physics, and math to solve complex problems of relevance to society.
- You want to use science and engineering principles to assist the challenge of global energy demands.
- You seek a profession that offers national and international networking opportunities.
- You want to work in the field, performing sophisticated computer simulations, or interpreting reservoir and production data.

Entrance to Major
This program currently has administrative enrollment controls. Administrative Enrollment Controls are initiated when limitations of space, faculty, or other resources in a major prevent accommodating all students who request them. Students must follow the administrative enrollment controls that are in effect for the semester that they enter the university.

First-Year Students Entering Summer 2020, Fall 2020, Spring 2021
In order to be eligible for entrance to this major, students must satisfy the following requirements:
- 29.1-59 graded Penn State credits (excludes transfer and AP credits)
- completed with a grade of C or better: CHEM 110, CHEM 112, MATH 140, MATH 141, PHYS 211
- earned a minimum cumulative grade-point average (GPA) of 2.60

Students Who Entered Prior to Summer 2020
Students who entered the University from Summer 2018 through Spring 2020 should view the administrative enrollment controls in the appropriate Undergraduate Bulletin archive (http://bulletins.psu.edu/undergraduate/archive/). Students who entered the University prior to the summer 2018 semester should view the administrative enrollment controls for the semester that they entered the university (http://advising.psu.edu/entrance-major-requirements/) on the Academic Advising Portal.

Degree Requirements
For the Bachelor of Science degree in Petroleum and Natural Gas Engineering, a minimum of 129 credits is required:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education</td>
<td>45</td>
</tr>
<tr>
<td>Requirements for the Major</td>
<td>114</td>
</tr>
</tbody>
</table>

30 of the 45 credits for General Education are included in the Requirements for the Major. This includes: 3 credits of GH courses; 9 credits of GN courses; 6 credits of GQ courses; 3 credits of GS courses; 9 credits of GWS courses.

General Education
Connecting career and curiosity, the General Education curriculum provides the opportunity for students to acquire transferable skills necessary to be successful in the future and to thrive while living in interconnected contexts. General Education aids students in developing intellectual curiosity, a strengthened ability to think, and a deeper sense of aesthetic appreciation. These are requirements for all baccalaureate students and are often partially incorporated into the requirements of a program. For additional information, see the General Education Requirements (http://bulletins.psu.edu/undergraduate/general-
education/baccalaureate-degree-general-education-program/) section of the Bulletin and consult your academic adviser.

The keystone symbol appears next to the title of any course that is designated as a General Education course. Program requirements may also satisfy General Education requirements and vary for each program.

Foundations (grade of C or better is required.)
- Quantification (GQ): 6 credits
- Writing and Speaking (GWS): 9 credits

Knowledge Domains
- Arts (GA): 6 credits
- Health and Wellness (GHW): 3 credits
- Humanities (GH): 6 credits
- Social and Behavioral Sciences (GS): 6 credits
- Natural Sciences (GN): 9 credits

Integrative Studies (may also complete a Knowledge Domain requirement)
- Inter-Domain or Approved Linked Courses: 6 credits

University Degree Requirements

First Year Engagement
All students enrolled in a college or the Division of Undergraduate Studies at University Park, and the World Campus are required to take 1 to 3 credits of the First-Year Seminar, as specified by their college First-Year Engagement Plan.

Other Penn State colleges and campuses may require the First-Year Seminar; colleges and campuses that do not require a First-Year Seminar provide students with a first-year engagement experience.

First-year baccalaureate students entering Penn State should consult their academic adviser for these requirements.

Cultures Requirement
6 credits are required and may satisfy other requirements
- United States Cultures: 3 credits
- International Cultures: 3 credits

Writing Across the Curriculum
3 credits required from the college of graduation and likely prescribed as part of major requirements.

Total Minimum Credits
A minimum of 120 degree credits must be earned for a baccalaureate degree. The requirements for some programs may exceed 120 credits. Students should consult with their college or department adviser for information on specific credit requirements.

Quality of Work
Candidates must complete the degree requirements for their major and earn at least a 2.00 grade-point average for all courses completed within their degree program.

Limitations on Source and Time for Credit Acquisition
The college dean or campus chancellor and program faculty may require up to 24 credits of course work in the major to be taken at the location or in the college or program where the degree is earned. Credit used toward degree programs may need to be earned from a particular source or within time constraints (see Senate Policy 83-80 (http://senate.psu.edu/policies-and-rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/#83-80)). For more information, check the Suggested Academic Plan for your intended program.

Requirements for the Major
To graduate, a student enrolled in the major must earn a grade of C or better in each course designated by the major as a C-required course, as specified by Senate Policy 82-44 (http://senate.psu.edu/policies-and-rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/#82-44).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 111</td>
<td>Experimental Chemistry I</td>
<td>1</td>
</tr>
<tr>
<td>ECON 102</td>
<td>Introductory Microeconomic Analysis and Policy</td>
<td>3</td>
</tr>
<tr>
<td>EMCH 210</td>
<td>Statics and Strength of Materials ²</td>
<td>5</td>
</tr>
<tr>
<td>EMCH 212</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>EME 460</td>
<td>Geo-resource Evaluation and Investment Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EMSC 100S</td>
<td>Earth and Mineral Sciences First-Year Seminar ¹</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 202C</td>
<td>Effective Writing: Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>GEO 1</td>
<td>Physical Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEO 454</td>
<td>Geology of Oil and Gas</td>
<td>3</td>
</tr>
<tr>
<td>MATH 220</td>
<td>Matrices</td>
<td>2</td>
</tr>
<tr>
<td>MATH 231</td>
<td>Calculus of Several Variables</td>
<td>2</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Ordinary and Partial Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 213</td>
<td>General Physics: Fluids and Thermal Physics</td>
<td>2</td>
</tr>
<tr>
<td>PNG 301</td>
<td>Introduction to Petroleum and Natural Gas Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PNG 420</td>
<td>Applied Reservoir Analysis and Secondary Recovery</td>
<td>3</td>
</tr>
<tr>
<td>PNG 425</td>
<td>Principles of Well Testing and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PNG 430</td>
<td>Reservoir Modeling</td>
<td>3</td>
</tr>
<tr>
<td>PNG 440W</td>
<td>Formarion Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PNG 480</td>
<td>Surface Production Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PNG 482</td>
<td>Production Engineering Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>PNG 490</td>
<td>Introduction to Petroleum Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>PNG 491</td>
<td>Capstone Design in Drilling and Completions</td>
<td>1</td>
</tr>
<tr>
<td>PNG 492</td>
<td>Petroleum Engineering Capstone Design</td>
<td>1</td>
</tr>
</tbody>
</table>

Prescribed Courses: Require a grade of C or better

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>Chemical Principles I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 112</td>
<td>Chemical Principles II</td>
<td>3</td>
</tr>
<tr>
<td>EME 301</td>
<td>Thermodynamics in Energy and Mineral Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EME 303</td>
<td>Fluid Mechanics in Energy and Mineral Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Calculus With Analytic Geometry I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 141</td>
<td>Calculus With Analytic Geometry II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 211</td>
<td>General Physics: Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 212</td>
<td>General Physics: Electricity and Magnetism</td>
<td>4</td>
</tr>
<tr>
<td>PNG 405</td>
<td>Rock and Fluid Properties</td>
<td>3</td>
</tr>
<tr>
<td>PNG 406</td>
<td>Rock and Fluid Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PNG 410</td>
<td>Applied Reservoir Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PNG 414</td>
<td>Drilling Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PNG 415</td>
<td>Drilling Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PNG 475</td>
<td>Production and Completions Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>
Additional Courses
Select 9 credits: one course from categories A, B, and C: 9

<table>
<thead>
<tr>
<th>A.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 15</td>
<td>Rhetoric and Composition</td>
<td>or ENGL 30 Honors Freshman Composition</td>
</tr>
<tr>
<td>PHIL 103</td>
<td>Ethics</td>
<td></td>
</tr>
<tr>
<td>PHIL 106</td>
<td>Business Ethics</td>
<td></td>
</tr>
<tr>
<td>PHIL 107</td>
<td>Philosophy of Technology</td>
<td></td>
</tr>
<tr>
<td>PHIL 233</td>
<td>Ethics and the Design of Technology</td>
<td></td>
</tr>
<tr>
<td>CMPSC 201</td>
<td>Programming for Engineers with C++</td>
<td>or CMPSC 21</td>
</tr>
</tbody>
</table>

Supporting Courses and Related Areas
Select 6 credits in consultation with adviser (students may apply 6 credits of ROTC) 6

1. The following substitutions are allowed for students attending campuses where the indicated course is not offered: CAS 100 can be substituted for EMSC 100S.
2. Students at commonwealth campuses and/or transfer students can substitute the combination of EMCH 211 and EMCH 213.

Integrated B.S. in Petroleum and Natural Gas Engineering (PNGE) and M.S. in Energy and Mineral Engineering (EME)

The integrated undergraduate-graduate (IUG) program between the Petroleum and Natural Gas Engineering undergraduate program and the Energy and Mineral Engineering graduate program enables academically superior and research-focused PNGE undergraduate students to also obtain an M.S. degree in Energy and Mineral Engineering in five years of study. Students should refer to the Energy and Mineral Engineering graduate program in the Graduate Program Bulletin (http://bulletins.psu.edu/graduate/programs/majors/energy-mineral-engineering/) for the IUG admission and degree requirements.

Course Substitutions for the Integrated B.S. in Petroleum and Natural Gas Engineering (PNGE) and M.S. in Energy and Mineral Engineering (EME)

As many as twelve of the credits required for the master’s degree may be applied to both the B.S. and M.S. degrees. A minimum of six credits counted for both the B.S. and M.S. degrees must be at the 500-level. Thesis and culminating/capstone experience credits may not be double counted. The undergraduate degree program officer will determine the specific undergraduate required courses for which the 500-level courses may be used to substitute to meet institutional and accreditation requirements.

Program Educational Objectives

1. Our graduates will integrate key science and engineering principles to address the technological challenges of the petroleum and natural gas industry.
2. Our graduates will practice in a broad range of petroleum engineering fields working on teams that create innovative solutions to the most pressing problems of the petroleum and natural gas industry by implementing the ideals of ethical behavior, professionalism, and environmental sensitivity and social awareness.
3. Our graduates will be recognized as critical and independent thinkers and will assume positions of leadership in defining the social, intellectual, business and technical dimensions of the professional organizations they belong to.
4. Our graduates will continue their lifelong learning process and participate in graduate education to remain as effective professionals in the workplace of the future.

Student Outcomes

Student outcomes describe what students are expected to know and be able to do by the time of graduation. The Petroleum and Natural Gas Engineering program is designed to enable students to:

1. Identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. Communicate effectively with a range of audiences
4. Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. Acquire and apply new knowledge as needed, using appropriate learning strategies.

Academic Advising

The objectives of the university’s academic advising program are to help advisees identify and achieve their academic goals, to promote their intellectual discovery, and to encourage students to take advantage of both in-and out-of-class educational opportunities in order that they become self-directed learners and decision makers.

Both advisers and advisees share responsibility for making the advising relationship succeed. By encouraging their advisees to become engaged in their education, to meet their educational goals, and to develop the habit of learning, advisers assume a significant educational role. The advisee’s unit of enrollment will provide each advisee with a primary academic adviser, the information needed to plan the chosen program of study, and referrals to other specialized resources.

READ SENATE POLICY 32-00: ADVISING POLICY (http://senate.psu.edu/policies-and-rules-for-undergraduate-students/32-00-advising-policy/)

University Park

Zuleima Karpyn
Program Chair for Petroleum and Natural Gas Engineering
151 Hosler Building
University Park, PA 16802
814-863-2273
ZKarpyn@psu.edu
Suggested Academic Plan

The suggested academic plan(s) listed on this page are the plan(s) that are in effect during the 2020-21 academic year. To access previous years’ suggested academic plans, please visit the archive (http://bulletins.psu.edu/undergraduate/archive/) to view the appropriate Undergraduate Bulletin edition (Note: the archive only contain suggested academic plans beginning with the 2018-19 edition of the Undergraduate Bulletin).

University Park Campus

The course series listed below provides only one of the many possible ways to move through this curriculum. The University may make changes in policies, procedures, educational offerings, and requirements at any time. This plan should be used in conjunction with your degree audit (accessible in LionPATH as either an Academic Plan report). Please consult with a Penn State academic adviser on a regular basis to develop and refine an academic plan that is appropriate for you.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140 or 140G (GQ)††</td>
<td>4</td>
<td>MATH 141 or 141G (GQ)††</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 110 (GN)††</td>
<td>3</td>
<td>ENGL 15, 30, or ESL 15</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 111 (GN)†</td>
<td>1</td>
<td>PHYS 211 (GN)††</td>
<td>4</td>
</tr>
<tr>
<td>EMSC 100S (or CAS 100 by substitution) (GWS)††</td>
<td>3</td>
<td>PHYS 211 (GN)††</td>
<td>4</td>
</tr>
<tr>
<td>ECON 102 (GS)†</td>
<td>3</td>
<td>General Education</td>
<td></td>
</tr>
<tr>
<td>General Education</td>
<td></td>
<td>Knowledge Domain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 212 (GN)††</td>
<td>4</td>
<td>PNG 301</td>
<td>3</td>
</tr>
<tr>
<td>EMCH 210</td>
<td>5</td>
<td>MATH 220</td>
<td>2</td>
</tr>
<tr>
<td>MATH 251</td>
<td>4</td>
<td>MATH 231</td>
<td>2</td>
</tr>
<tr>
<td>CMPSC 201 or 202</td>
<td>3</td>
<td>EMCH 212</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOSC 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>PHIL 103, 106, 107, or 233 (GH)†</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNG 405*</td>
<td>3</td>
<td>PNG 450*</td>
<td>3</td>
</tr>
<tr>
<td>PNG 406*</td>
<td>1</td>
<td>PNG 451*</td>
<td>1</td>
</tr>
<tr>
<td>EME 301*</td>
<td>3</td>
<td>PNG 475*</td>
<td>3</td>
</tr>
<tr>
<td>EME 303*</td>
<td>3</td>
<td>PNG 490</td>
<td>1</td>
</tr>
<tr>
<td>PNG 440W (Writing across the curriculum)</td>
<td>3</td>
<td>GEOSC 454</td>
<td>3</td>
</tr>
<tr>
<td>General Education</td>
<td></td>
<td>Knowledge Domain</td>
<td></td>
</tr>
<tr>
<td>Knowledge Domain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>General Education Health and Wellness (GHW)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNG 420</td>
<td>3</td>
<td>PNG 425</td>
<td>3</td>
</tr>
<tr>
<td>PNG 430</td>
<td>3</td>
<td>PNG 480</td>
<td>3</td>
</tr>
<tr>
<td>PNG 491</td>
<td>1</td>
<td>PNG 482</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 202C (GWS)††</td>
<td>3</td>
<td>PNG 492</td>
<td>1</td>
</tr>
<tr>
<td>EME 460</td>
<td>3</td>
<td>Technical Elective from approved department list²</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective from approved department list²</td>
<td>3</td>
<td>General Education Knowledge Domain</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General Education Health and Wellness (GHW)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Total Credits 129

* Course requires a grade of C or better for the major
† Course requires a grade of C or better for General Education
Course is an Entrance to Major requirement
‡ Course satisfies General Education and degree requirement

University Requirements and General Education Notes:

US and IL are abbreviations used to designate courses that satisfy University Requirements (United States and International Cultures).

W, M, X, and Y are the suffixes at the end of a course number used to designate courses that satisfy University Writing Across the Curriculum requirement.

GWS, GQ, GHW, GN, GA, GH, and GS are abbreviations used to identify General Education program courses. General Education includes Foundations (GWS and GQ) and Knowledge Domains (GHW, GN, GA, GH, GS, and Integrative Studies). Foundations courses (GWS and GQ) require a grade of ‘C’ or better.

Integrative Studies courses are required for the General Education program. N is the suffix at the end of a course number used to designate an Inter-Domain course and Z is the suffix at the end of a course number used to designate a Linked course.

All incoming Schreyer Honors College first-year students at University Park will take ENGL/CAS 137 in the fall semester and ENGL/CAS 138 in the spring semester. These courses carry the GWS designation and replace both ENGL 30 and CAS 100. Each course is 3 credits.

1 Students who begin their studies at non-UP locations and/or join the college after their first year should substitute CAS 100, CAS 100A, CAS 100B, or CAS 100C (GWS) for EMSC 100S (GWS). EMSC 100S Earth and Mineral Sciences First year Seminar (3) is a required course only for students who begin their studies at UP in the College of Earth and Mineral Sciences.

2 Approved Technical Electives for the PNGE major can be found at the department web site: http://www.eme.psu.edu/pnge/techelectives Students may use up to 6 credits of ROTC as technical electives.

Advising Notes:

Only students who are enrolled in EMSC or DUS are eligible to apply to PNGE.
Courses required for the major may be offered fall semester only, spring semester only, or both fall and spring semesters. Consult with your adviser and department to discuss your academic progress and course sequencing.

The PNGE program strongly recommends that students have summer internships, as many companies will only consider hiring PNGE graduates who have had at least one internship.

Commonwealth Campuses

The course series listed below provides only one of the many possible ways to move through this curriculum. The University may make changes in policies, procedures, educational offerings, and requirements at any time. This plan should be used in conjunction with your degree audit (accessible in LionPATH as either an Academic Requirements or What If report). Please consult with a Penn State academic adviser on a regular basis to develop and refine an academic plan that is appropriate for you.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140 (GQ)‡#†</td>
<td>4 MATH 141 (GQ)‡#†</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 110 (GN)‡</td>
<td>3 CHEM 112‡#</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 111 (GN)‡</td>
<td>1 PHYS 211 (GN)‡#†</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 15, 30, or ESL 15 (GWS)‡†</td>
<td>3 ECON 102 (GS)†</td>
<td>3</td>
</tr>
<tr>
<td>General Education Knowledge Domain</td>
<td>3 General Education Health and Wellness (GHW)</td>
<td>1.5</td>
</tr>
<tr>
<td>General Education Health and Wellness (GHW)</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>15.5</td>
<td>15.5</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 212 (GN)‡</td>
<td>4 PNG 301</td>
<td>3</td>
</tr>
<tr>
<td>EMCH 211</td>
<td>3 EMCH 212</td>
<td>3</td>
</tr>
<tr>
<td>MATH 251</td>
<td>4 EMCH 213</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 201 or 202 (if CMPS 201 or 202 is not available at your campus, take CMPS 121 instead)</td>
<td>3 MATH 220</td>
<td>2</td>
</tr>
<tr>
<td>CAS 100, 100A, 100B, or 100C (GWS)‡††</td>
<td>3 MATH 231</td>
<td>2</td>
</tr>
<tr>
<td>GEOSC 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNG 405*</td>
<td>3 PNG 450*</td>
<td>3</td>
</tr>
<tr>
<td>PNG 406*</td>
<td>1 PNG 451*</td>
<td>1</td>
</tr>
<tr>
<td>PNG 440W (Writing across the curriculum)</td>
<td>3 PNG 475*</td>
<td>3</td>
</tr>
<tr>
<td>EME 301*</td>
<td>3 PNG 490</td>
<td>1</td>
</tr>
<tr>
<td>EME 303*</td>
<td>3 GEOSC 454</td>
<td>3</td>
</tr>
<tr>
<td>General Education Knowledge Domain</td>
<td>3 PNG 410*</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 103, 106, 107, or 233 (GH)†</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNG 420</td>
<td>3 PNG 425</td>
<td>3</td>
</tr>
<tr>
<td>PNG 430</td>
<td>3 PNG 480</td>
<td>3</td>
</tr>
<tr>
<td>PNG 491</td>
<td>1 PNG 482</td>
<td>1</td>
</tr>
<tr>
<td>EME 460</td>
<td>3 PNG 492</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 202C (GWS)‡†</td>
<td>3 Technical Elective from approved department list²</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective from approved department list²</td>
<td>3 General Education Knowledge Domain</td>
<td>3</td>
</tr>
<tr>
<td>General Education Knowledge Domain</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

University Requirements and General Education Notes:

US and IL are abbreviations used to designate courses that satisfy University Requirements (United States and International Cultures).

W, M, X, and Y are the suffixes at the end of a course number used to designate courses that satisfy University Writing Across the Curriculum requirement.

GWS, GQ, GHW, GN, GA, GH, and GS are abbreviations used to identify General Education program courses. General Education includes Foundations (GWS and GQ) and Knowledge Domains (GHW, GN, GA, GH, GS, and Integrative Studies). Foundations courses (GWS and GQ) require a grade of ‘C’ or better.

Integrative Studies courses are required for the General Education program. N is the suffix at the end of a course number used to designate an Inter-Domain course and Z is the suffix at the end of a course number used to designate a Linked course.

All incoming Schreyer Honors College first-year students at University Park will take ENGL/CAS 137 in the fall semester and ENGL/CAS 138 in the spring semester. These courses carry the GWS designation and replace both ENGL 30 and CAS 100. Each course is 3 credits.

1. Students who begin their studies at non-UP locations and/or join the college after their first year should substitute CAS 100, CAS 100A, CAS 100B, or CAS 100C (GWS) for EMSC 100S (GWS). EMSC 100S Earth and Mineral Sciences First year Seminar (3) is a required course only for students who begin their studies at UP in the College of Earth and Mineral Sciences.

2. Approved Technical Electives for the PNGE major can be found at the department web site: http://www.eme.psu.edu/pnge/techelectives

Advising Notes:

Only students who are enrolled in EMSC or DUS are eligible to apply to PNGE.
Courses required for the major may be offered fall semester only, spring semester only, or both fall and spring semesters. Consult with your adviser and department to discuss your academic progress and course sequencing.

The PNGE program strongly recommends that students have summer internships, as many companies will only consider hiring PNGE graduates who have had at least one internship.

Career Paths

Graduates of this program find rewarding careers across the globe as engineers for governmental and regulatory bodies, oil and gas producing companies, and other independent and service companies in the energy sector.

Careers

Our graduates may be candidates for careers in a wide range of industries in both the private and public sector including major oil and gas production companies, large and small independents and service companies and government agencies.

MORE INFORMATION ABOUT POTENTIAL CAREER OPTIONS FOR GRADUATES OF THE PETROLEUM AND NATURAL GAS ENGINEERING PROGRAM (http://www.eme.psu.edu/pnge/career/)

Opportunities for Graduate Studies

Graduates may be well suited to pursue graduate-level studies. Further study toward an M.S. or Ph.D. can lead to research, university, or management positions.

MORE INFORMATION ABOUT OPPORTUNITIES FOR GRADUATE STUDIES (http://www.eme.psu.edu/academics/graduate/)

Professional Resources

- Society of Petroleum Engineers Penn State Student Chapter (https://sites.psu.edu/spepennstate/positive-energy/)
- American Association of Drilling Engineers Penn State Student Chapter (http://www.eme.psu.edu/academics/student-orgs/isee/)
- Positive Energy (https://sites.psu.edu/spepennstate/positive-energy/)
- International Society of Explosives Engineers Penn State Student Chapter (http://www.eme.psu.edu/academics/student-orgs/isee/)

Accreditation

The Petroleum and Natural Gas Engineering B.S. program in the John and Willie Leone Family Department of Energy and Mineral Engineering (EME) at Penn State is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org/.

MORE INFORMATION ABOUT ABET ACCREDITATION (http://www.abet.org)

Contact

University Park

JOHN AND WILLIE LEONE FAMILY DEPARTMENT OF ENERGY AND MINERAL ENGINEERING
113 Hosler Building
University Park, PA 16802
814-865-3437