CIVIL ENGINEERING, B.S. (ENGINEERING)

Begin Campus: Any Penn State Campus
End Campus: University Park

Program Description
The program in Civil and Environmental Engineering is designed to provide the basic undergraduate education required for private practice and public service in civil engineering and/or continue formal education. Emphasis is placed on the fundamentals of civil engineering principles and design techniques. Students utilize basic engineering science concepts in several of the different specialty areas (e.g., construction/management, environmental, materials/pavement design/geotechnical, structures, transportation, and water resources). Finally the students are able to choose an area of specialization for professional practice or graduate studies.

The program is broadened by courses in communication, arts, humanities, social and behavioral sciences, as well as other engineering disciplines. Students gain experience in working as members of a team and using interdisciplinary approaches to solve problems. These experiences, as well as those related to engineering principles and design, are provided through exercises in the classroom, laboratory, and field. The program culmination is a capstone design course wherein the students' knowledge and skills are applied to actual engineering problems.

What is Civil Engineering?
The Bachelor of Science in Civil Engineering's mission is to educate future engineers through solid science and engineering principles. We seek to identify engineering challenges, create pioneering solutions, and lead the industry with our research discoveries and design innovations. With eight research facilities and six research centers and units, we tackle some of the major problems facing engineering today, challenging existing knowledge in an effort to advance the fields of civil and environmental engineering. We offer a diverse range of undergraduate and graduate degree programs focusing on environmental engineering, geotechnical and materials engineering, structural engineering and mechanics, transportation engineering, and water resources engineering.

You Might Like This Program If...
Our students are trained to solve the design, construction, and maintenance concerns of the natural and physically built environment. They deal with public works including highways, railroads, bridges, buildings, and water and energy systems. You might like this major if you want to tackle some of the major problems facing engineering today and lead the industry in research discoveries and design innovations. Our graduates are responsible for designing, building, and maintaining all of the structures that surround us—from buildings to transportation systems to water—in order to improve the needs of society.

Entrance to Major
This program currently has administrative enrollment controls. Administrative Enrollment Controls are initiated when limitations of space, faculty, or other resources in a major prevent accommodating all students who request them. Students must follow the administrative enrollment controls that are in effect for the semester that they enter the university.

First-Year Students Entering Summer 2018, Fall 2018, Spring 2019
In order to be eligible for entrance to this major, students must satisfy the following requirements:

- 40-59 cumulative credits (credits completed at Penn State for which a quality letter grade was earned)
- completed with a grade of C or better: CHEM 110, MATH 140, MATH 141, MATH 250 or MATH 251, PHYS 211, and PHYS 212
- earned a minimum of 2.60 cumulative GPA

Students Who Entered Prior to Summer 2018
Students who entered the University prior to the summer 2018 semester should view the administrative enrollment controls for the semester that they entered the university (http://advising.psu.edu/entrance-major-requirements) on the Academic Advising Portal.

Degree Requirements
For the Bachelor of Science degree in Civil Engineering, a minimum of 127 credits is required:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education</td>
<td>45</td>
</tr>
<tr>
<td>Requirements for the Major</td>
<td>109</td>
</tr>
</tbody>
</table>

27 of the 45 credits for General Education are included in the Requirements for the Major. This includes: 9 credits of GN courses; 6 credits of GQ courses; 3 credits of GS courses; 9 credits of GWS courses.

General Education
Connecting career and curiosity, the General Education curriculum provides the opportunity for students to acquire transferable skills necessary to be successful in the future and to thrive while living in interconnected contexts. General Education aids students in developing intellectual curiosity, a strengthened ability to think, and a deeper sense of aesthetic appreciation. These are requirements for all baccalaureate students and are often partially incorporated into the requirements of a program. For additional information, see the General Education Requirements (http://bulletins.psu.edu/undergraduate/general-education/baccalaureate-degree-general-education-program) section of the Bulletin and consult your academic adviser.

The keystone symbol appears next to the title of any course that is designated as a General Education course. Program requirements may also satisfy General Education requirements and vary for each program.

Foundations (grade of C or better is required.)
- Quantification (GQ): 6 credits
- Writing and Speaking (GWS): 9 credits

Knowledge Domains
- Arts (GA): 6 credits
- Health and Wellness (GHW): 3 credits
- Humanities (GH): 6 credits
- Social and Behavioral Sciences (GS): 6 credits
- Natural Sciences (GN): 9 credits
Integrative Studies (may also complete a Knowledge Domain requirement)
- Inter-Domain or Approved Linked Courses: 6 credits

University Degree Requirements

First Year Engagement
All students enrolled in a college or the Division of Undergraduate Studies at University Park, and the World Campus are required to take 1 to 3 credits of the First-Year Seminar, as specified by their college First-Year Engagement Plan.

Other Penn State colleges and campuses may require the First-Year Seminar; colleges and campuses that do not require a First-Year Seminar provide students with a first-year engagement experience.

First-year baccalaureate students entering Penn State should consult their academic adviser for these requirements.

Cultures Requirement
6 credits are required and may satisfy other requirements
- United States Cultures: 3 credits
- International Cultures: 3 credits

Writing Across the Curriculum
3 credits required from the college of graduation and likely prescribed as part of major requirements.

Total Minimum Credits
A minimum of 120 degree credits must be earned for a baccalaureate degree. The requirements for some programs may exceed 120 credits. Students should consult with their college or department adviser for information on specific credit requirements.

Quality of Work
Candidates must complete the degree requirements for their major and earn at least a 2.00 grade-point average for all courses completed within their degree program.

Limitations on Source and Time for Credit Acquisition
The college dean or campus chancellor and program faculty may require up to 24 credits of course work in the major to be taken at the location or in the college or program where the degree is earned. Credit used toward degree programs may need to be earned from a particular source or within time constraints (see Senate Policy 83-80 (http://senate.psu.edu/policies-and-rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/#83-80)). For more information, check the Suggested Academic Plan for your intended program.

Requirements for the Major
To graduate, a student enrolled in the major must earn a grade of C or better in each course designated by the major as a C-required course, as specified by Senate Policy 82-44 (http://senate.psu.edu/policies-and-rules-for-undergraduate-students/82-00-and-83-00-degree-requirements/#82-44).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 111</td>
<td>Experimental Chemistry I</td>
<td>1</td>
</tr>
<tr>
<td>EDSGN 100</td>
<td>Introduction to Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 202C</td>
<td>Effective Writing: Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>GEOSC 1</td>
<td>Physical Geology</td>
<td>3</td>
</tr>
<tr>
<td>MATH 220</td>
<td>Matrices</td>
<td>2</td>
</tr>
<tr>
<td>STAT 401</td>
<td>Experimental Methods</td>
<td></td>
</tr>
<tr>
<td>CE 310</td>
<td>Surveying</td>
<td></td>
</tr>
<tr>
<td>CE 321</td>
<td>Highway Engineering</td>
<td></td>
</tr>
<tr>
<td>CE 332</td>
<td>Professionalism, Economics & Construction Project Delivery</td>
<td></td>
</tr>
<tr>
<td>CE 335</td>
<td>Engineering Mechanics of Soils</td>
<td></td>
</tr>
<tr>
<td>CE 336</td>
<td>Materials Science for Civil Engineers</td>
<td></td>
</tr>
<tr>
<td>CE 340</td>
<td>Structural Analysis</td>
<td></td>
</tr>
<tr>
<td>CE 360</td>
<td>Fluid Mechanics</td>
<td></td>
</tr>
<tr>
<td>CE 370</td>
<td>Introduction to Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>CHEM 110</td>
<td>Chemical Principles I</td>
<td></td>
</tr>
<tr>
<td>EMCH 211</td>
<td>Statics</td>
<td></td>
</tr>
<tr>
<td>EMCH 212</td>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>EMCH 213</td>
<td>Strength of Materials</td>
<td></td>
</tr>
<tr>
<td>MATH 140</td>
<td>Calculus With Analytic Geometry I</td>
<td></td>
</tr>
<tr>
<td>MATH 141</td>
<td>Calculus with Analytic Geometry II</td>
<td></td>
</tr>
<tr>
<td>MATH 251</td>
<td>Ordinary and Partial Differential Equations</td>
<td></td>
</tr>
<tr>
<td>PHYS 211</td>
<td>General Physics: Mechanics</td>
<td></td>
</tr>
<tr>
<td>PHYS 212</td>
<td>General Physics: Electricity and Magnetism</td>
<td></td>
</tr>
<tr>
<td>CAS 100A</td>
<td>Effective Speech</td>
<td></td>
</tr>
<tr>
<td>or CAS 100B</td>
<td>Effective Speech</td>
<td></td>
</tr>
<tr>
<td>CE 100S</td>
<td>Topics and Contemporary Issues in Civil and Environmental Engineering: First-Year Seminar (or 1 credit of First-Year Seminar or elective)</td>
<td></td>
</tr>
<tr>
<td>CE 475</td>
<td>Water Quality Chemistry 2</td>
<td></td>
</tr>
<tr>
<td>or CE 337</td>
<td>Civil Engineering Materials Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHE 220</td>
<td>Introduction to Chemical Engineering Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>or ME 201</td>
<td>Introduction to Thermal Science</td>
<td></td>
</tr>
<tr>
<td>CMPSC 200</td>
<td>Programming for Engineers with MATLAB</td>
<td></td>
</tr>
<tr>
<td>or CMPSC 201</td>
<td>Programming for Engineers with C++</td>
<td></td>
</tr>
<tr>
<td>ENGL 15</td>
<td>Rhetoric and Composition</td>
<td></td>
</tr>
<tr>
<td>or ENGL 30</td>
<td>Honors Freshman Composition</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 14</td>
<td>Principles of Economics</td>
<td></td>
</tr>
<tr>
<td>ECON 102</td>
<td>Introductory Microeconomic Analysis and Policy</td>
<td></td>
</tr>
<tr>
<td>ECON 104</td>
<td>Introductory Macroeconomic Analysis and Policy</td>
<td></td>
</tr>
<tr>
<td>Select 9 credits of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 341</td>
<td>Design of Concrete Structures</td>
<td></td>
</tr>
<tr>
<td>CE 342</td>
<td>Design of Steel Structures</td>
<td></td>
</tr>
<tr>
<td>CE 371</td>
<td>Water and Wastewater Treatment</td>
<td></td>
</tr>
<tr>
<td>CE 422</td>
<td>Transportation Planning</td>
<td></td>
</tr>
<tr>
<td>CE 423</td>
<td>Traffic Operations</td>
<td></td>
</tr>
<tr>
<td>CE 432</td>
<td>Construction Project Management</td>
<td></td>
</tr>
<tr>
<td>CE 435</td>
<td>Foundation Engineering</td>
<td></td>
</tr>
<tr>
<td>CE 436</td>
<td>Construction Engineering Materials</td>
<td></td>
</tr>
<tr>
<td>CE 437</td>
<td>Engineering Materials for Sustainability</td>
<td></td>
</tr>
<tr>
<td>CE 441</td>
<td>Structural Design of Foundations</td>
<td></td>
</tr>
<tr>
<td>CE 447</td>
<td>Structural Analysis by Matrix Methods</td>
<td></td>
</tr>
<tr>
<td>CE 461</td>
<td>Water-resource Engineering</td>
<td></td>
</tr>
<tr>
<td>CE 462</td>
<td>Open Channel Hydraulics</td>
<td></td>
</tr>
</tbody>
</table>
Students in the IUG program must satisfy the degree requirements for both Bachelor of Science and Master of Engineering degrees. However, the total course load is reduced due to the maximum of 10 credits that can count towards both degrees. A minimum of 7 credits proposed to count for both degrees must be at the 500 level. Master’s paper credits may not be double counted. The first three years of the IUG program are identical to the first three years of the Bachelor of Science program. The fourth year of the IUG program differs from that of the Bachelor of Science program due to the courses that count toward the Master of Science degree requirements.

Students will be admitted on a provisional basis late in their 6th semester so that they may be advised appropriately for the IUG 7th semester courses. Formal acceptance is contingent upon maintaining a 3.0 cumulative GPA through the 6th semester, and a collective GPA of 3.3 or better in courses designated MATH, CHEM, CE, or ENVE.

Student performance will be monitored on an on-going basis. In addition, a formal evaluation of student academic performance will be performed when the student has completed 114 to 115 credits, the end of the first semester of the senior year for a typical student in the program. Students who have not maintained a collective 3.3 GPA in courses designated MATH, CHEM, CE, or ENVE will be transferred to a probationary status. Students who have not maintained a collective GPA of 3.3 or better in courses designated MATH, CHEM, CE, or ENVE by end of their eighth semester will be dropped from the graduate program but will continue in the Bachelor of Science CE degree program.

If for any reason a student admitted to the IUG program is unable to complete the requirements for the Master of Engineering degree, the student will be permitted to receive the Bachelor of Science degree, assuming all the undergraduate degree requirements have been completed satisfactorily.

Students have the choice of receiving the B.S. degree at the end of the fourth year or waiting until the end of the fifth year to receive both degrees. Students who elect to receive the B.S. degree at the end of the fourth year will pay graduate tuition for courses taken in the fifth year; students opting to receive both degrees at the end of the fifth year will pay undergraduate tuition for all five years. Note that students who are awarded a graduate assistantship must elect to receive the B.S. degree at the end of the fourth year. If for any reason a student admitted to the IUG program is unable to complete the requirements for the Master of Science degree, the student will be permitted to receive the Bachelor of Science degree assuming all the undergraduate degree requirements have been satisfactorily completed. Students who successfully complete the courses listed in the recommended schedule will satisfy the requirements for the Bachelor of Science degree by the end of their fourth year.

Admission Requirements

To apply formally, students must submit a completed Graduate School Application Form, a transcript, and three faculty recommendations. If the student expresses interest early in their undergraduate career, their faculty adviser will help undergraduate candidates determine a sequence of courses that will prepare the for acceptance into the Integrated Undergraduate-Graduate (IUG) degree program. In order to apply for the IUG program, students must have completed a minimum of 82 credits. At the time of the application, students must have completed or be enrolled in:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 335</td>
<td>Engineering Mechanics of Soils</td>
<td>3</td>
</tr>
<tr>
<td>CE 336</td>
<td>Materials Science for Civil Engineers</td>
<td>3</td>
</tr>
<tr>
<td>CE 360</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CE 370</td>
<td>Introduction to Environmental Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

A typical student would apply by the sixth semester and before the beginning of the seventh semester. For consideration for acceptance into the program, students must have earned a minimum cumulative grade-point average of 3.0, and a collective GPA of 3.3 or better in courses designated MATH, CHEM, CE, or ENVE.

To apply formally, students must submit a completed Graduate School application. The student should mention in the notes section that the application is for the IUG program in Civil Engineering/Environmental Engineering.

Students will be admitted on a provisional basis late in the spring semester of their application year so that they may be advised appropriately for the IUG 7th semester courses. Formal acceptance is contingent upon maintaining the 3.0 cumulative GPA through the 6th semester, and a collective GPA of 3.3 or better in courses designated MATH, CHEM, CE, or ENVE.

Degree Requirements

Students in the IUG program must satisfy the degree requirements for both Bachelor of Science and Master of Engineering degrees. The total course load is reduced due to a maximum of 10 credits that can count
towards both degrees. The minimum of 7 credits double-counted must be
at the 500 level. Master’s paper credits may not be double counted.

Program Educational Objectives
The educational objectives of our undergraduate program will prepare our
graduates to:

- begin and sustain a career in consulting, industry, or state and federal
government agencies, such as the departments of transportation and
departments of environmental protection;
- lead and work in interdisciplinary teams needed to design sustainable
and resilient infrastructure through knowledge and application of
environmental, geotechnical, materials, structural, transportation, and
water resources engineering;
- engage in life-long learning opportunities, including graduate school;
and
- obtain and maintain professional licensure

Student Outcomes
Student outcomes describe what students are expected to know and be
able to do by the time of graduation. The Civil Engineering program is
designed to enable students to:

1. Identify, formulate, and solve complex engineering problems by
applying principles of engineering, science, and mathematics
2. Apply engineering design to produce solutions that meet specified
needs with consideration of public health, safety, and welfare, as well
as global, cultural, social, environmental, and economic factors
3. Communicate effectively with a range of audiences
4. Recognize ethical and professional responsibilities in engineering
situations and make informed judgments, which must consider the
impact of engineering solutions in global, economic, environmental,
and societal contexts
5. Function effectively on a team whose members together provide
leadership, create a collaborative and inclusive environment,
establish goals, plan tasks, and meet objectives
6. Develop and conduct appropriate experimentation, analyze and
interpret data, and use engineering judgment to draw conclusions
7. Acquire and apply new knowledge as needed, using appropriate
learning strategies.

Academic Advising
The objectives of the university’s academic advising program are to help
advisees identify and achieve their academic goals, to promote their
intellectual discovery, and to encourage students to take advantage of
both in-and out-of class educational opportunities in order that they
become self-directed learners and decision makers.

Both advisers and advisees share responsibility for making the advising
relationship succeed. By encouraging their advisees to become engaged
in their education, to meet their educational goals, and to develop the
habit of learning, advisers assume a significant educational role. The
advisee’s unit of enrollment will provide each advisee with a primary
academic adviser, the information needed to plan the chosen program of
study, and referrals to other specialized resources.

READ SENATE POLICY 32-00: ADVISING POLICY (http://senate.psu.edu/
policies-and-rules-for-undergraduate-students/32-00-advising-policy)

University Park
Heather Hamby
Undergraduate Programs Assistant
218 Sackett Building
University Park, PA 16802
814-867-0470
hehce@engr.psu.edu

Harrisburg
Seroj Mackertich, Ph.D.
Program Chair
Olmsted Building, W236
Middletown, PA 17057
717-948-6131
oct@psu.edu

Suggested Academic Plan
All Civil Engineering Disciplines - Ending at University
Park Campus

The course series listed below provides only one of the many possible
ways to move through this curriculum. The University may make changes
in policies, procedures, educational offerings, and requirements at any
time. This plan should be used in conjunction with your degree audit
(accessible in LionPATH as either an Academic Requirements or What If
report). Please consult with a Penn State academic adviser on a regular
basis to develop and refine an academic plan that is appropriate for you.

If you are starting at a campus other than the one this plan is ending at,
please refer here:

http://advising.engr.psu.edu/degree-requirements/academic-plans-by-
major.aspx

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 100S (or other First Year Seminar)†</td>
<td>1</td>
<td>3 ENGL 15, 30, or ESL 15 (GWS)††</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 110 (GN)‡†</td>
<td></td>
<td>3 MATH 141 or 141E (GQ)††</td>
<td>4</td>
</tr>
<tr>
<td>ECON 102 or 104 (GS)‡</td>
<td>1</td>
<td>3 PHYS 211 (PHYS 211L and PHYS 211R (GN))‡†</td>
<td>4</td>
</tr>
<tr>
<td>EDSGN 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 140 or 140E (GQ)‡†</td>
<td>1</td>
<td>3 General Education Course†</td>
<td>3</td>
</tr>
<tr>
<td>General Education Course†</td>
<td></td>
<td>3 General Education Course (GHW)‡</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>16.5</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS 100A or 100B (GWS)‡†</td>
<td>3</td>
<td>3 CMPSC 200 or 201</td>
<td>3</td>
</tr>
<tr>
<td>EMCH 211†</td>
<td></td>
<td>3 EMCH 212†</td>
<td>3</td>
</tr>
<tr>
<td>GEOSC 1‡</td>
<td></td>
<td>3 EMCH 213 or 213D</td>
<td>3</td>
</tr>
<tr>
<td>MATH 251*</td>
<td></td>
<td>4 IE 424 or STAT 401</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 212 (PHYS 212L and PHYS 212R (GN))‡†</td>
<td></td>
<td>4 MATH 220</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

General Education Course†
Third Year

Fall

- **CE 310**: 3 Credits
- **CE 332**: 3 Credits
- **CE 336**: 1 Credit
- **CE 340**: 3 Credits
- **CE 360**: 3 Credits
- **General Education Course (GHW)**: 1.5 Credits

Credits: 16.5

Spring

- **CE 321**: 3 Credits
- **CE 335**: 3 Credits
- **CE 337**: 1 Credit
- **CE 370**: 3 Credits
- **ME 201**: 3 Credits
- **General Education Course**: 3 Credits

Credits: 13

Fourth Year

Fall

- **ENGL 202C (GWS)**: 3 Credits
- **Civil Engineering Elective**: 3 Credits
- **Civil Engineering Elective**: 3 Credits
- **Technical Elective**: 3 Credits
- **General Education Course**: 3 Credits

Credits: 15

Spring

- **Civil Engineering Capstone Design**: 3 Credits
- **General Education Course**: 3 Credits

Credits: 15

Total Credits: 127

* Course requires a grade of C or better for the major
† Course requires a grade of C or better for General Education
Course is an Entrance to Major requirement
† Course satisfies General Education and degree requirement

University Requirements and General Education Notes:

US and IL are abbreviations used to designate courses that satisfy University Requirements (United States and International Cultures).

W, M, X, and Y are the suffixes at the end of a course number used to designate courses that satisfy University Writing Across the Curriculum requirement.

GWS, GQ, GHW, GN, GA, GH, and GS are abbreviations used to identify General Education program courses. General Education includes Foundations (GWS and GQ) and Knowledge Domains (GHW, GN, GA, GH, GS, and Integrative Studies). Foundations courses (GWS and GQ) require a grade of ‘C’ or better.

Integrative Studies courses are required for the General Education program. N is the suffix at the end of a course number used to designate an Inter-Domain course and Z is the suffix at the end of a course number used to designate a Linked course.

All incoming Schreyer Honors College first-year students at University Park will take ENGL/CAS 137 in the fall semester and ENGL/CAS 138 in the spring semester. These courses carry the GWS designation and replace both ENGL 30 and CAS 100. Each course is 3 credits.

Health and Physical Activity Elective:

Students who complete the ROTC Program may substitute 3 ROTC credits for the GHW requirement and 3 ROTC credits for M E 201.

Technical Elective:

Select from department list. Students who complete the Cooperative Education Program may substitute the 3-credit sequence of ENGR 295, ENGR 395, and ENGR 495 for a Technical Elective.

** If a student is pursuing the Structural sub-discipline in Civil Engineering, if CE 340 is not taken in the 5th semester it may delay graduation.

Career Paths

Our graduates work in a variety of fields to develop solutions for challenges in design, construction, research, and education. Civil engineering graduates work in the public sector for government agencies or in the private sector at consulting or construction firms. Some civil engineers hold supervisory or administrative positions, while others pursue careers in design, construction, or education.

Opportunities for Graduate Studies

Our graduate degree programs give students a stronger foundation in civil or environmental engineering that helps prepare them to apply their skills across a broad range of disciplines in both academia and industry. If you wish to develop and expand your expertise, you will have ample opportunity to do so here. Our first-rate faculty collectively possess a deep and broad range of knowledge that provides an ideal environment for interdisciplinary work. Whether your passion calls you to start your own business, pursue the next ground-breaking innovation, or help solve a humanitarian crisis, our graduate degree programs can take you closer to your goals.

Professional Resources

• American Society of Civil Engineers (http://www.asce.org)

Accreditation

The baccalaureate program in Civil Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org (http://www.abet.org).

MORE INFORMATION ABOUT ABET ACCREDITATION (http://www.abet.org)

Contact

University Park

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING
212 Sackett Building
University Park, PA 16802
814-863-3084
hehce@engr.psu.edu
http://www.cee.psu.edu/

Harrisburg

SCHOOL OF SCIENCE, ENGINEERING, AND TECHNOLOGY
Olmsted Building, W236
Middletown, PA 17057
717-948-6124
jes5437@psu.edu
https://harrisburg.psu.edu/science-engineering-technology/civil-structural-engineering/bachelor-science-civil-engineering