ADDITIVE MANUFACTURING AND DESIGN (AMD)

AMD 545: Engineering and Scientific Principles of Additive Manufacturing
4 Credits

In additive manufacturing (AM), components are fabricated via sequential joining using a bonding agent, curing, sintering, or fusing. AM fabrication of metals, ceramics, polymers, and organics has been demonstrated and is actively being used in industry and academia. ESC 545 / AMD 545 explores these processes with a focus on the fundamentals of sintering and fusion of metals, ceramics, and polymers. The topic is multi-disciplinary, requiring examination of individual AM system components, the physics of energy-material interactions, and the materials science at play during heat-reheat cycles. Opportunities for process sensing and real-time control are explored, as well as the role of post-process technologies in realizing serviceable components. These topics will lead to a discussion of methods and strategies to optimize component properties and characteristics. Current and potential impacts of AM on society are also covered.

Recommended preparations: A course in engineering materials and/or engineering analysis is highly desired but not required.

AMD 562: Design for Additive Manufacturing
4 Credits

Additive manufacturing (AM, colloquially 3D printing) is rapidly changing the face of modern manufacturing. This layer-by-layer manufacturing approach allows for parts to be created with significant levels of complexity and in cost-effective small batches, with reduced raw material waste when compared with traditional manufacturing processes. This technology has given rise to the need for Design for Additive Manufacturing (DFAM) techniques capable of accounting for both the possibilities and restrictions offered by AM in product design. However, due to the relative youth of the technology, understanding of how to properly establish and evaluate these design considerations is still evolving. In this course, students will be exposed to research in the field of DFAM that aims to establish an understanding of both opportunistic possibilities (e.g., lattice structures, topology optimization, and mass customization) and quantify restrictive limitations (e.g., minimum feature size and support material removal) when designing products for creation with additive manufacturing. The material will be presented through a combination of literature investigations and design exercises viewed through the lens of research in the DFAM field. The objectives of the course include describing the role that DFAM plays in the greater field of additive manufacturing, identifying similarities and differences between existing DFAM approaches and frameworks, synthesizing opportunistic DFAM approaches and how they improve product quality and novelty, identifying and quantifying restrictive DFAM considerations through experimentation, and identifying and discussing key areas of future research to advance the field of DFAM.

CONCURRENT: IE 527
Cross-listed with: EDSGN 562

AMD 567: Additive Manufacturing of Metallic Materials
3-4 Credits

This course will expose students to the state of the art in understanding processing, structure, and property relationships in materials fabricated using additive manufacturing (AM). There will be a strong focus on metallic alloys, but polymers, ceramics, and advanced materials will also be briefly discussed. The emphasis of the course will be on understanding the links between processing and the resulting structure, as well as the microstructure and the mechanics of the fabricated materials. Initially, we will discuss the types of AM and the feedstock materials required for these processes. We will then focus on metals, and discuss the energy sources used in AM (lasers, electron beams), and their interactions with the material. We will discuss the molten pool characteristics and the solidification microstructures. We will relate the microstructures seen in AM to the resulting mechanical properties (elastic deformation, plastic deformation, fracture, fatigue performance, and residual stress/distortion). Finally, we will discuss specific case studies for metals, polymers, ceramics, and advanced materials.

Cross-listed with: MATSE 567

AMD 590: Colloquium
1-3 Credits/Maximum of 3

Continuing seminars that consist of a series of individual lectures by faculty, students, or outside speakers.

AMD 596: Individual Studies
1-9 Credits/Maximum of 9

Creative projects, including non-thesis research, which are supervised on an individual basis and which fall outside the scope of formal courses.

AMD 597: Special Topics
1-9 Credits/Maximum of 9

Formal courses given infrequently to explore, in depth, a comparatively narrow subject which may be topical or of special interest.

AMD 600: Thesis Research
1-15 Credits/Maximum of 999

Thesis Research