individual-based models for population dynamics. The students will then apply these models to interacting species, learning about mutualistic, competitive and host-natural enemy interactions. Finally, we will explore theory for communities of species in space and time. Applied problems will be drawn from all areas of conservation, harvesting, pest control and epidemiology. Graduate students will additionally be required to attend a once a week case study, where we will focus on a paper from the recent literature that uses the techniques or theory learned that week in class. Additionally, graduates will develop models of their own, based on their own research, or on some other subject of interest. They will be expected to meet with me twice in a group and individually during office hours throughout the semester, to discuss the development of their projects. They will have to complete a written report on the motivation, model development, and results and implications of their work. This work will take the form of a short manuscript (as if for publication to a representative journal in their field). They will also have to make a verbal presentation to the entire class on their project (15 minutes, as if attending a professional conference). The course will be offered once/year.

Prerequisite: BIOL 220 or an introductory ecology course

BIOL 555: Statistical Analysis of Genomics Data

3 Credits

Statistical Analysis of High Throughput Biology Experiments.

Cross-listed with: MCIIBS 555, STAT 555

BIOL 571: Integrative and Cellular Mammalian Physiology I

3 Credits

Mammalian cardiovascular, respiratory, renal, and gastrointestinal systems. This course in Cellular and Integrative Mammalian Physiology covers all major aspects of physiology. A special emphasis will be placed on how cellular aspects of physiology are integrated with organ and systems physiology. It is designed for students that either major in Physiology or are interested in integrating physiology concepts into their education. An in depth presentation of membrane biophysics, muscle dynamics, cardiovascular and circulatory regulation, respiratory and renal function, as well as acid base balance are addressed.

Prerequisite: BIOL 472

Cross-listed with: PHSIO 571

BIOL 572: Integrative and Cellular Mammalian Physiology II Endocrine Physiology

3 Credits

The course in Cellular and Integrative Mammalian Physiology II covers all major aspects of endocrine physiology. A special emphasis will be placed on how cellular aspects of physiology are integrated with organ and systems physiology. This course is designed for graduate students in the Physiology or Animal Science graduate programs, or students who are interested in integrating physiology concepts into their work in another program. Although there are no prerequisites for the course, prior courses in physiology, endocrinology, and/or biochemistry are beneficial. The course will include the following topics: gastrointestinal physiology, pancreatic hormones and integrated metabolism, hypothalamic pituitary function, thyroid, parathyroid and bone, as well as physiology of growth and lactation. Additional topics will encompass adrenal function, sexual
differentiation, male and female reproduction, embryo and adult derived stem cells, aging, obesity, and metabolic syndrome.

Cross-listed with: PHSIO 572

BIOL 590: Colloquium
1-3 Credits/Maximum of 3
Continuing seminars which consist of a series of individual lectures by faculty, students, or outside speakers.

BIOL 591: Molecular Evolutionary Biology Seminar
1 Credits
Continuing seminars in Molecular Evolutionary Biology consisting of individual lectures by faculty, students, or outside speakers.

BIOL 592: Critical Evaluation of Literature in Biology
1 Credits
Weekly readings and critiques of recent papers from primary literature are used to teach independent thinking and effective scientific communication. BIOL 592 BIOL 592 Critical Evaluation of Literature in Biology (1) This course teaches beginning graduate students how to evaluate new findings reported in primary literature in the biological sciences. Each week, a recently published paper is evaluated according to 8 basic criteria as follows: 1. Does the author adequately establish a context for the issues addressed in the paper? Are the issues addressed in the paper important in the field? Why or why not? 2. What is the hypothesis? Is it clearly stated? Is it operational (i.e. "falsifiable")? 3. Are the methods adequate to test the hypothesis? Why or why not? What are the controls? Are they adequate? 4. Are the data clearly presented? Are the results properly analyzed? Are statistical inferences stated appropriately? Do the data meet the assumptions of the statistical tests? 5. What conclusions are drawn from the results? Do the conclusions follow from the data? Have some conclusions been overlooked? Are there reasonable alternative interpretations of the data? Did the authors consider alternative hypotheses? 6. What could be done to improve the paper? Consider written format as well as the overall experimental design. For example, is the title appropriate? Does the abstract accurately summarize the results and conclusions? Does the paper use recent and appropriate references? 7. What is your overall opinion of the size of contribution that the paper makes to the body of knowledge in its field? Is this work creative? Does it provide new insights or a framework to understand previously disparate data? Defend your position. 8. What would be the next set of tests of the hypothesis or the next hypotheses to test? How should these hypotheses be examined experimentally? To what extent do you think this paper will stimulate further studies? The goal of the course is to provide students with opportunities to sharpen their thinking in regard to what constitutes meaningful scientific experimentation, interpretation of results, and effective presentation of information in text, figures, and tables. Near the end of the course each student prepares a written critique of a paper, and meets individually with the faculty to discuss their critique. The course follows a format very similar to the Ph.D. candidacy exam for Biology, thus providing formal preparation for that exam. Faculty: James Marden

Prerequisite: Departmentally controlled

Prerequisite: Departmentally controlled

BIOL 596: Individual Studies
1-9 Credits/Maximum of 9
Creative projects, including nonthesis research, that are supervised on individual basis and which fall outside the scope of formal courses.

BIOL 597: Special Topics
1-9 Credits/Maximum of 9
Formal courses given on a topical or special interest subject which may be offered infrequently.

BIOL 597A: **SPECIAL TOPICS**
1-9 Credits

BIOL 598: Special Topics
1-9 Credits/Maximum of 9
Formal courses given on a topical or special interest subject which may be offered infrequently; several different topics may be taught in one year or semester.

BIOL 598B: **SPECIAL TOPICS**
1-3 Credits

BIOL 600: Thesis Research
1-15 Credits/Maximum of 999
No description.

BIOL 601: Ph.D. Dissertation Full-Time
0 Credits/Maximum of 999
No description.

BIOL 602: Supervised Experience in College Teaching
1-3 Credits/Maximum of 3
Supervised experience in teaching and orientation to other selected aspects of the profession at The Pennsylvania State University.

BIOL 610: Thesis Research Off Campus
1-15 Credits/Maximum of 999
No description.

BIOL 611: Ph.D. Dissertation Part-Time
0 Credits/Maximum of 999
No description.

BIOL 893: Experiential Teaching in Biology
2 Credits
The course provides a broad exploration of the science of learning as well as how to effectively develop curricula and pedagogy to support effective learning in undergraduate biology laboratory courses. Additionally, this course will prepare graduate students for future roles as educators. In particular, this course will focus on the cognitive principles of how people
learn most effectively as well as provide students the skills involved in developing curricula and pedagogy to support active learning and a learner-centered environment in undergraduate biology laboratory courses. The major topics to be covered include the science of learning, the need for curricular reform in the sciences, how to create a student-centered learning environment, and the ethical and professional foundations of teaching. After successfully completing this course, students will be able to use evidence to discuss the value of learner-centered classrooms in the sciences, identify elements of a learner-centered biology classroom, identify major classroom challenges and methods of approaching them, write effective assessment questions and provide effective feedback to students, lead productive and effective class discussions, and demonstrate understanding of how people learn and apply learner-centered teaching approaches to developing effective lesson plans.