ASTRONOMY AND ASTROPHYSICS (ASTRO)

ASTRO 1: Astronomical Universe
3 Credits

The development of modern understanding of the astronomical universe from planets and stars to galaxies and cosmology. Student who have passed ASTRO 005, ASTRO 006, or ASTRO 010 may not take this course for credit. ASTRO 001 Astronomical Universe (3) (GN)(BA) This course meets the Bachelor of Arts degree requirements. ASTRO 001 is an introductory course for non-science majors. It provides a broad introduction to Astronomy including the historical development of the subject, basic physics of gravity, light, and atoms; telescopes; planets, moons, and other objects in our solar system; exosolar planets; the Sun and other stars; the evolution of stars; the Milky Way galaxy and other galaxies; distant quasars and other active galaxies; the expanding universe; cosmology based on the Big Bang theory; and life in the universe. The goal of this course is to cover most of the areas of modern astronomy at a level which requires only basic mathematics.

Bachelor of Arts: Natural Sciences
General Education: Natural Sciences (GN)

ASTRO 1H: Astronomical Universe
3 Credits

The development of modern understanding of the astronomical universe from planets and stars to galaxies and cosmology. Students who have passed ASTRO 005, ASTRO 006, or ASTRO 010 may not take this course for credit. ASTRO 001H Astronomical Universe (3) (GN)(BA) This course meets the Bachelor of Arts degree requirements. ASTRO 001H is an introductory course for non-science majors. It provides a broad introduction to Astronomy including the historical development of the subject, basic physics of gravity, light, and atoms; telescopes; planets, moons, and other objects in our solar system; exosolar planets; the Sun and other stars; the evolution of stars; the Milky Way galaxy and other galaxies; distant quasars and other active galaxies; the expanding universe; cosmology based on the Big Bang theory; and life in the universe. The goal of this course is to cover most of the areas of modern astronomy at a level which requires only basic mathematics.

Bachelor of Arts: Natural Sciences
General Education: Natural Sciences (GN)

Honors

ASTRO 5: The Sky and Planets
3 Credits

The development of our modern understanding of the visible sky and planetary systems. Students who have passed ASTRO 001 or ASTRO 010 may not take this course for credit. ASTRO 005 The Sky and Planets (3) (GN)ASTRO 005 will introduce students to the wonders of the universe and help them to understand how the universe works through the laws of physics. During the semester, they will learn about the different observed motions of objects in our sky, how astronomical objects influence our concepts of time, the nature of light and spectra, how planetary systems are formed and comparative details about our solar system and other planetary systems. Many colorful images and movies of the solar system have been collected by un-manned satellite missions like Voyagers I & II, the Magellan mission to Venus, the Mars Rovers and Pathfinders, the Galileo mission to Jupiter, the Cassini and Huygens missions to Saturn, and the New Horizons mission which is now on its way to study Pluto. These images will be used to convey the excitement of discovery to our students.

Prerequisite: Students who have passed ASTRO 001 or ASTRO 010 may not take this course.
General Education: Natural Sciences (GN)

ASTRO 7N: The Artistic Universe
3 Credits

ASTRO 7N (GA/GN) is both an introductory course in astronomy for non-science majors and a creative space for those with science backgrounds interested in visual arts; it provides students the opportunity to demonstrate understanding and develop a personal connection to the subject by designing four art projects. Students will learn the broad concepts of astronomy by playing an immersive video game, which allows them to 1) explore seasons, phases of the Moon, light, gravity, and telescopes from a virtual colony on Mars; 2) fly from planet to planet in the Solar System and learn about their properties and formation; 3) visit the Sun and other stars, learn how they produce energy, and about their life cycles; 4) fly through the cosmos and construct their own universe, particle by particle. Students will also learn about the relationships and exchanges between arts and sciences, and explore inspiration and perspective on these topics by designing themed art projects using traditional and digital media. These projects include assembling a photo-journal of astronomically-relevant subjects, constructing their own video-game-like scene, interpreting data to inform a plausible depiction of an alien world, and producing three- color images using methods like those employed by astronomers to compose and display Hubble
Space Telescope images. Students may only receive credit for one of the following classes ASTRO 1, ASTRO 5, ASTRO 6, ASTRO 7, OR ASTRO 10

General Education: Arts (GA)
General Education: Natural Sciences (GN)
General Education - Integrative: Interdomain
GenEd Learning Objective: Crit and Analytical Think
GenEd Learning Objective: Integrative Thinking

ASTRO 10: Elementary Astronomy

2 Credits

Introductory survey of modern astronomy from planets and stars to galaxies and the universe. Students who have passed ASTRO 001, ASTRO 005, or ASTRO 006 may not take this course for credit. Students may not receive General Education credit for ASTRO 010 unless they also take ASTRO 011. ASTRO 010 Elementary Astronomy (2) (GN) (BA) This course meets the Bachelor of Arts degree requirements. ASRTO 010 provides the 2 credit lecture component of a one-semester overview of modern astronomy. The class covers a wide range of topics in planetary, stellar, galactic, and extragalactic astronomy and cosmology. The level is appropriate for students with no university-level science background. The instructor makes frequent use of dramatic images of astronomical objects, demonstrations, and computer simulations. Profound themes underlie the content of the course: how the physical structure and evolution of the universe appears to be ruled by deterministic mathematical laws; how our understanding of the universe progresses by the intricate interplay between theory and observations; how we, as living organisms on a well-placed planet, appear to be both an intimate part of yet an unusual occurrence within the universe. The student will gain perspective on his or her place in a vast and stunningly beautiful universe.

Bachelor of Arts: Natural Sciences
General Education: Natural Sciences (GN)

ASTRO 11: Elementary Astronomy Laboratory

1 Credits

Selected experiments and explorations to illustrate major astronomical principles and techniques. Telescopes observations of planets, stars and nebulae. ASTRO 011 Elementary Astronomy Laboratory (1) (GN)(BA) This course meets the Bachelor of Arts degree requirements. ASTRO 011 is the 1 credit laboratory component of this overview of astronomy. It covers material similar to the lecture component, but the selected topics are covered in more depth and are focussed on active learning components. Weekly two-hour labs include discussion of the search for extraterrestrial intelligence, an activity to illustrate the phases of the moon, analysis of the colorful spectra of different chemical elements, and exploration of the deepest image of space ever obtained. In addition, students will complete a semester nighttime observing project that typically involves learning some constellations, tracing phases of the moon, and sketching images seen through our well-equipped rooftop student observatory. While most laboratory sections meet in the evening, daytime sections concentrate on classroom, computer-based and solar observing activities.

Enforced Prerequisite at Enrollment: or concurrent: ASTRO 1 or ASTRO 10
Bachelor of Arts: Natural Sciences
General Education: Natural Sciences (GN)

ASTRO 19N: Being in the Universe

3 Credits

Being in the Universe” considers three fundamental questions of human existence from both humanistic and scientific perspectives: (1) What is the nature of our universe, and to what extent are creatures like ourselves a predictable consequence of it? (2) What is the nature of time, and what does it mean to be a conscious being living our lives through time? (3) What would it mean for humans to be alone in the Galaxy or the universe, or alternatively, not alone? "Being in the Universe" is an integrative GH+GN GenEd course. The course’s three major units cover the following topics: (1) We discuss cosmology and religion as human enterprises, as well as the history of science; (2) We study the basic scientific theory of the Big Bang universe, and consider its implications for human life; (3) We address contemporary theories of the multiverse from scientific, philosophical, and literary perspectives; (4) We consider the thermodynamic and relativistic theories of time, and the basic philosophical approaches to time, and discuss the implications of these for our ordinary human experience of the past, present, and future; (5) We discuss the history of life in the universe, the possibility of life on other planets, and the social, religious, and imaginative reactions to those possibilities in literature and film.

Cross-listed with: CMLIT 19N
Bachelor of Arts: Humanities
Bachelor of Arts: Natural Sciences
General Education: Humanities (GH)
General Education: Natural Sciences (GN)
General Education - Integrative: Interdomain
GenEd Learning Objective: Crit and Analytical Think
GenEd Learning Objective: Integrative Thinking
GenEd Learning Objective: Key Literacies

ASTRO 20: First-Year Astronomy Seminar

2 Credits

Introduction to the study of modern astronomy through discussions, activities, and writing.

First-Year Seminar

ASTRO 21: Introduction to Research in Astronomy

2 Credits

The course is designed to provide first year undergraduate students in both the ASTRO and PASTR majors with necessary tools and techniques to perform research. Students will practice a variety of techniques on authentic astronomical data, which might include light curves from the Kepler mission, galaxy and stellar spectra from the Sloan Digital Sky Survey, or pulsar data from the Green Bank or Arecibo telescopes. An emphasis will be placed on using common tools for observational astronomy, such as viewing astronomical FITS images in SAOImage. Students will be introduced to the common programming languages and environments used by astronomers at the time the course is offered, which currently includes Python and IDL. Students will be given experience in calculating statistical information about a set of astronomical data using the R programming language and its built-in tools. Students will make plots to illustrate a pattern in their data using the tools in Python, IDL, or R, for example.
ASTRO 97: Special Topics
1-9 Credits/Maximum of 9

Formal courses given infrequently to explore, in depth, a comparatively narrow subject which may be topical or of special interest.

ASTRO 116: Introduction to Astronomy for Educators
3 Credits

This course is designed to engage students with the big ideas of astronomy in ways that will help them understand both the content of astronomy, as well as the practices of science as carried out by astronomers. The course is designed for prospective elementary and middle school teachers (PK-4 and 4-8 majors), although it is available to other non-science majors. Throughout the course, students engage in a series of investigations that lead towards the development of evidence-based explanations for patterns observed in the current Solar System. Investigations will include computer-based simulations, night-sky observations, and use of simple laboratory equipment. These investigations lead students towards an understanding of how observations of the current Solar System can be explained by the model of its formation. The course is designed to build from students’ own personal observations of the day and night sky towards developing increasingly sophisticated explanations for those phenomena and beyond. Conducting these astronomy investigations will help students understand fundamental aspects of physics, thus broadly preparing them for future science teaching in these domains. The course models evidence-based pedagogy, thus helping to prepare students for future teaching careers as they learn effective strategies for teaching science.

Cross-listed with: SCIED 116

ASTRO 120: The Big Bang Universe
3 Credits

Exploration of Cosmology, Birth, and Ultimate Fate of the Universe; Origin of Galaxies, Quasars, and Dark Matter. For non-science majors ASTRO 120 The Big Bang Universe (3) (GN)(BA) This course meets the Bachelor of Arts degree requirements. Astronomical observations made during the last 70 years, combined with mathematical physical theory (Einstein’s General Relativity), has led to a dramatic new view of the history of the Universe. Ten to twenty billion years ago, all the material that is now contained in stars, planets, and galaxies was then compressed into a region, smaller than a pinhead, and so hot that atoms could not survive. This fiery cauldron cooled and expanded, forming hydrogen and helium, and eventually all the materials and structures that we know today. This course will discuss the evidence, theories and controversies of this new scientific cosmology, commonly known as ‘the Big Bang’. This class is designed for the non-science students who, after learning the fundamentals of astronomy in ASTRO 1(GN), ASTRO 5 (GN) or ASTRO 10 (GN), want to pursue further the questions of cosmology. The great success of the Big Bang theory in explaining the expansion of the Universe, the synthesis of the chemical elements, and the relic radiation leftover from the first moments are reviewed. Some of the questions discussed are still debated in the scientific community. For example: Why do some galaxies have stunning spiral structures, while others are relatively featureless ellipticals? What is the “dark matter” that may have emerged from the Big Bang, and seems to make a larger contribution to the mass of the universe than all of the material we are familiar with? What can the most distant and oldest objects we know of, the quasars, tell us about how galaxies formed? In presenting the development of this subject, the empirical and conceptual methods of modern physical science are conveyed. Students are assigned problems that exercise the use of elementary mathematics and physics to address real issues, and will confront discussions of interpretation and meaning in essays. A final project allows them to explore individual interests.

Enforced Prerequisite at Enrollment: ASTRO 1 or ASTRO 6 or ASTRO 10
Bachelor of Arts: Natural Sciences
General Education: Natural Sciences (GN)

ASTRO 130: Black Holes in the Universe
3 Credits

The predicted properties of black holes and the astronomical evidence for their existence are investigated in the context of modern ideas about space, time, and gravity. ASTRO 130 Black Holes in the Universe (3) (GN) (BA) This course meets the Bachelor of Arts degree requirements. Black Holes in the Universe introduces students to the predicted properties of black holes and the astronomical evidence for their existence. Modern ideas about the nature of space, time, and gravity are also covered. The key topics discussed in the course include Newton’s and Einstein’s theories of gravity, predicted properties of black holes, stars and their fates, how to detect a black hole, gamma-ray bursts, supermassive black holes in galactic nuclei, active galaxies, black hole spin, gravitational waves, Hawking radiation, singularities, and black hole child universes. The course is intended to be an attractive choice for students who are interested in enriching and broadening their understanding of modern physical science. The course is intended for students who have completed and enjoyed the one-semester survey of modern astronomy, ASTRO 1 or ASTRO 10. It has an interdisciplinary flavor, combining basic physical concepts, astronomical observations, and philosophical ideas to present a complete picture of the current understanding of black holes. Students use mathematics at the level of high school algebra.

Enforced Prerequisite at Enrollment: ASTRO 1 or ASTRO 6 or ASTRO 10
Bachelor of Arts: Natural Sciences
General Education: Natural Sciences (GN)

ASTRO 140: Life in the Universe
3 Credits

The problem of the existence of life beyond Earth is investigated, drawing from recent research in astronomy and other fields. For non-science majors. ASTRO 140 Life in the Universe (3) (GN)(BA) This course meets the Bachelor of Arts degree requirements. The possibility of life beyond Earth is one of the great unsolved puzzles of human thought and has been debated for millennia. An answer would fundamentally change the relationship between the human race to the rest of the Universe. Advances in modern physics and astrophysics have dramatically changed and enriched our understanding of our cosmic surroundings, but have not yet produced an unambiguous evidence concerning the extraterrestrial life. Yet, significant progress has been made on certain aspects of the problem. Recent observations of protoplanetary disks around young stars, planets around solar-type stars and a rapidly spinning pulsar (a Penn State discovery), and pervasive organic molecules throughout the Galaxy give tantalizing albeit indirect, hints in favor of the existence of nonterrestrial life. "Life in the Universe" is envisioned to be an attractive choice for students who are interested in enriching and broadening their understanding of modern science.
The course is highly interdisciplinary, combining evidence from several fields of science to describe our chances to encounter life beyond Earth and the Solar System. Selecting this course would be a logical choice for students who completed and enjoyed ASTRO 1 (GN), ASTRO 5 (GN), ASTRO 10 (GN). The students are expected to reach the following goals from this course: - learn to appreciate limitations of human experience and a role of the interdisciplinary approach in solving scientific problems - gain understanding of a relationship between the physical Earth, its biosphere, and the rest of the observable Universe - examine in some detail a contemporary problem of scientific investigation: the astrophysical evidence for planets around stars other than the Sun - assess the scientific significance of searches for extraterrestrial life including technological civilizations. The course material is conveyed, analyzed, and discussed through lectures, invited talks, reading, essay writing, homework assignments, and oral presentations. Lectures systematically cover the topics listed in the course outline at a level appropriate for non-science students, although Science and Engineering majors do take the course and perform at a higher technical level. While general understanding of astronomy from the prerequisite course is expected, the necessary physical and astrophysical concepts are reintroduced to assure a logical and coherent flow of information throughout the course. Videos are used to illustrate a number of topics, such as the search for extraterrestrial intelligence, physical conditions on planets of the Solar System, the detection of planets around a neutron star, and to evaluate the scientific content of science fiction movies. Invited talks by faculty from other departments enrich the course material with in-depth presentations of subjects such as habitable zones around stars, the basics and perspectives of space flight and the foundations of biological evolution. There has been some experimentation with activity and assessment strategies for the course. Some of the work involves quantitative analysis while other work requires qualitative synthesis of classroom experience with readings. Group presentations give students a chance to study selected, often controversial topics and present them to the class in a disciplined, scientific manner.

Enforced Prerequisite at Enrollment: ASTRO 1 or ASTRO 5 or ASTRO 10
Bachelor of Arts: Natural Sciences
General Education: Natural Sciences (GN)

ASTRO 141N: Film and Extraterrestrial Life: Science Fact or Fiction?

3 Credits

The search for life beyond planet Earth has been the subject of much interdisciplinary scientific search and has stimulated human imagination. Scientific discoveries of exoplanets (outside of our solar system), of extremophiles (life which can survive in extreme conditions) and the discoveries of conditions on other bodies in our solar system which might be able to support life, has provided progress in answering the question of the existence of extraterrestrial life. Not only have a plethora of fictional work appeared in the film media to depict scenarios of life beyond Earth, but there has also been an abundance of video media created to present the scientific ideas to the wider audience beyond the scientific community. This course intends a critical evaluation of both nonfiction and fictional media works in the educational dissemination of scientific ideas and the effective presentation of concepts. We will analyze techniques in photography, mise en scene, editing, sound, dramatization, and writing as they are applied to topics in astrobiology.

Cross-listed with: COMM 151N
General Education: Arts (GA)
General Education: Natural Sciences (GN)
physics to astronomical data in the 19th-20th centuries to understand
distances, masses and energy sources of stars. The formation, structure
and evolution of stars is treated in the context of physical processes
developed in ASTRO 291. The class studies the death of stars, including
spectacular phenomena such as supernova explosions, pulsars and
black holes, solutions to difficult problem of establishing distance
scales (stellar, galactic, intergalactic) are presented. In the second half
of the course, the students examine the Universe on progressive larger
scales: our Milky Way galaxy, other galaxies, and massive black holes in
galactic cores (e.g. quasars). Exotic phenomena such as gravitational
lenses, gamma-ray bursts and cosmic rays are investigated. Finally,
the class delves into the remarkable findings of modern cosmology:
Hubble’s discovery of the expansion of the Universe, the discovery of
the cosmic microwave background and consequent dominance of Big
Bang cosmology in the context of Newtonian and Einsteinian theories
of gravity. Cosmological evolution is studied; e.g. formation of light
elements during the first few minutes, and the growth of large-scale
structure that continues to the present. Unsolved problems faced by
today’s scientists are emphasized.

Enforced Prerequisite at Enrollment: ASTRO 291
 Bachelor of Arts: Natural Sciences
 General Education: Natural Sciences (GN)

ASTRO 296: Independent Studies

1-18 Credits/Maximum of 18

Creative projects, including research and design, which are supervised on
an individual basis and which fall outside the scope of formal courses.

ASTRO 296H: Independent Studies

2 Credits

Creative projects, including research and design, which are supervised on
an individual basis and which fall outside the scope of formal courses.

Honors

ASTRO 297: Special Topics

1-9 Credits/Maximum of 9

Formal courses given infrequently to explore, in depth, a comparatively
narrow subject which may be topical or of special interest.

ASTRO 320: Observational Astronomy Laboratory

3 Credits

Basic observational astronomy techniques introduced through
observational exercises, lab experiments, and lectures on relevant
statistical techniques. ASTRO 320 Observational Astronomy Laboratory
(3) (GN) ASTRO 320 will provide students with practical experience
in basic observational and laboratory aspects of astronomical data
collection and analysis, including an introduction to associated statistical
concepts. Observational techniques will be introduced through an
observing project using a telescope with a CCS imaging camera. Lectures
will introduce fundamental principles including Poisson and Gaussian
statistics, measurement precision, propagation of errors, and systematic
uncertainties. These principles will be put into practice in the observing
project and with laboratory experiments investigating the properties
of light and cosmic rays. Experiments include: a cosmic ray telescope;
a Michelson interferometer; a photodiode and monochromator; laser
interference, diffraction and refraction; fluorescent gases; and a
diffraction grating spectrometer.

Enforced Prerequisite at Enrollment: ASTRO 291
 General Education: Natural Sciences (GN)
 GenEd Learning Objective: Effective Communication
 GenEd Learning Objective: Crit and Analytical Think

ASTRO 401: Fundamentals of Planetary Science and Astronomy

4 Credits

Overview of the techniques used and results from studies of the Solar
System, stars, and galaxies. ASTRO 401 Fundamentals of Planetary
Science and Astronomy (3) This course will focus in core content areas in
planetary science and astronomy. Students will explore the fundamentals
in robotic exploration of the Solar System, how astronomers map and
navigate the night sky, our understanding of the nature and evolution
of stars, and the nature and evolution of galaxies. Students will engage
with real data from Solar System missions as well as ground-based
and space-based telescopes. Through the use of many databases and data
archives from missions and observatories, the students will become
familiar with the census of astronomical objects in various categories.
A particular emphasis will be placed on examples of qualitative and
quantitative problem solving in these content areas. In addition, students
will explore how scientists communicate their results to the public, and
they will get hands-on experience, such as planning and executing a
planetarium show.

Enforced Prerequisite at Enrollment: (ASTRO 1 or ASTRO 5 or ASTRO 6 or
ASTRO 10) and MATH 140.

ASTRO 402: Astronomical Telescopes, Techniques, and Data Analysis

3 Credits

Properties and use of optical telescopes, imaging and spectroscopy,
multi-wavelength techniques, data analysis and statistics, practical
research methods. ASTRO 402 Astronomical Telescopes, Techniques,
and Data Analysis (3) This course will provide practical experience and
understanding of the telescopes and techniques by which astronomers
obtain data and conduct research. The study of telescopes will include
optical, infrared, radio, ultraviolet, X-ray, and gamma ray observations,
and students will learn to set up and use optical telescopes. In-depth
coverage of the instruments used for imaging and spectroscopic
observations of a variety of astronomical objects will be provided.
Applications will include topics in planets, stars, galaxies, and cosmology.
Detailed examples of data analysis will be given, including the relevant
statistical techniques. Finally, the process by which research in
astronomy is conducted will be reviewed, from proposing observations,
to obtaining them, to analyzing and interpreting them, to writing up
the results. This course is a requirement for students in the Planetary
Science and Astronomy major and minor. It may be taken by any students
with the needed pre-requisites, but cannot be counted towards the
required 400 level courses for the Astronomy and Astrophysics major or
minor.

Writing Across the Curriculum
ASTRO 410: Computational Astrophysics
3 Credits
Applications of numerical methods and computer programming to astrophysics, including stellar physics and cosmology.

Enforced Prerequisite at Enrollment: (CMPSC 201 or CMPSC 121) and PHYS 212 and PHYS 213 and PHYS 214

ASTRO 414: Stellar Structure and Evolution
3 Credits
Theory of Stellar structure and evolution including energy generation and transport and an examination of stellar models. ASTRO 414 Stellar Structure and Evolution (3) ASTRO 414 covers the theory of stellar structure and evolution at an introductory level. It includes the basic physical processes that influence the structure of a star, such as energy generation in stellar cores, the transport of energy to the surface via photon diffusion and convection, equilibrium conditions, etc. It examines realistic stellar models as they apply to stars of different masses, for example, polytropes and other approximations. The treatment of stellar evolution includes gravitational collapse, stable stellar configurations on the main sequence, and the fast-paced late stages of evolution, leading up to the formation of compact objects. Realistic stellar models will be employed to illustrate the structures of different types of stars and the influence of various physical processes on these models.

Enforced Prerequisite at Enrollment: ASTRO 292 and MATH 230 and PHYS 212 and PHYS 213 and PHYS 214 and PHYS 237

ASTRO 420: Planets and Planetary System Formation
3 Credits
Solar system properties, star formation, protoplanetary disks and planet formation, solar system model, extrasolar planets, and astrobiology. ASTRO 420W Planets and Planetary System Formation (3) The course explores the wide variety of physical and chemical processes that govern the motions and properties of planets. Observations of the planets, moons, asteroids, comets and planetary rings in our Solar System are described. The properties of extrasolar planets are also emphasized. The process of planetary formation is discussed in the context of the solar system and in the context of extrasolar planets. The prospects of life and the effect of life on such planets will also be discussed. It will be taken by roughly half of the juniors and seniors majoring in Astronomy and Astrophysics (about 10 people). The course will include writing papers on current issues of debate in the areas of solar system and extrasolar planets and will satisfy the "Writing Across the Curriculum" requirement.

Enforced Prerequisite at Enrollment: ASTRO 292
Writing Across the Curriculum

ASTRO 440: Introduction to Astrophysics
3 Credits
Theoretical investigation of physical processes in astronomical objects and systems; modern physical interpretation of astronomical phenomena.

Enforced Prerequisite at Enrollment: MATH 230 and PHYS 237

ASTRO 451: Astronomical Techniques
3 Credits
Practical methods of modern observational astronomy, detectors, filters, instrumentation for both ground-based and space observations, and data analysis. ASTRO 451 Astronomical Techniques (3) ASTRO 451 will introduce students to the techniques and technologies for modern observational astronomy, emphasizing the development of practical skills as well as understanding through computer-based investigations integrated with traditional lecture content. Beginning with a summary of probability theory, the students will be introduced to standard techniques of statistical analysis including hypothesis testing and the characterization of uncertainties. Subsequent lectures and computer exercises will discuss the physics and design of astronomical detectors, the principles of telescope and spectroscopy design, and the data analysis methods used in processing astronomical datasets. Significant emphasis will be placed on estimation of signal-to-noise ratios for various observing scenarios. The effects of the Earth’s atmosphere, interstellar matter, and the expanding Universe on the propagation of astronomical signals will also be discussed.

Enforced Prerequisite at Enrollment: PHYS 212 and PHYS 213 and PHYS 214

ASTRO 475: Stars and Galaxies
3 Credits
Astronomical studies concerning the distribution and evolution of stars and gas in our and other galaxies.

Enforced Prerequisite at Enrollment: ASTRO 292
Writing Across the Curriculum

ASTRO 480: Nebulae, Galaxies, and Cosmology
3 Credits
Emission-line spectroscopy, structure and evolution of galaxies, physics of galactic nuclei and quasars, observational cosmology.

Enforced Prerequisite at Enrollment: ASTRO 292 and PHYS 212 and PHYS 213 and PHYS 214

ASTRO 485: Introduction to High-Energy Astronomy
3 Credits
The study of black holes, neutron stars, white dwarfs, supernova remnants, and extragalactic objects through x-ray and gamma ray observations.

Enforced Prerequisite at Enrollment: PHYS 237

ASTRO 494H: Honors Thesis
1-6 Credits/Maximum of 6
Investigation of an original research problem, including a literature search. Preparation of a formal thesis is optional
ASTRO 496: Independent Studies

1-18 Credits/Maximum of 18

Creative projects, including research and design, which are supervised on an individual basis and which fall outside the scope of formal courses.

ASTRO 497: Special Topics

1-9 Credits/Maximum of 9

Formal courses given infrequently to explore, in depth, a comparatively narrow subject which may be topical or of special interest.