Many abnormal electrocardiograph signals are studied pursuant to a well as the electro-physiological signals of the heart. The normal and relays, solenoids, lighting, video displays, motors, printers and batteries. used with medical devices, such as: pressure, temperature, audio, on the human body. A variety of transducers will be studied that are discussed to provide an understanding of how signals are detected of measurement, sensors, electrodes and measurement errors are quality required for medical devices. The electro-physiological theories systems are discussed in relation to the electrical power delivery and leakage current is studied so the student understands the causes I (5) This course introduces the student to electrical safety standards Introduction to the field of biomedical engineering technology, electrical diagrams; preventive maintenance inspections; and troubleshooting Principles of medical equipment: operation, application; circuit and block theory of measurement: terms, factors, and errors -electrodes, sensors, and transducers devices and circuits -cardiovascular anatomy and physiology -bio-potentials: electro-conduction system of the heart -common ECG waveforms: normal and abnormal -ECG monitor application and connections to patient Prerequisite: EET 105

BE_T 203: Biomedical Equipment Laboratory (Internship)

4 Credits

Practical experience, within or related to the hospital environment, on a variety of biomedical instruments. BE T 203 Biomedical Equipment Laboratory (4) The final semester internship is a curriculum requirement for the Biomedical Engineering Technology (BET) Program. It allows eligible students to develop entry-level skills in the biomedical field while gaining valuable work experience before graduation. The program consists of 400 hours of hands-on experience in an actual work environment on patient care and life support equipment. The student is expected to understand and perform basic fundamentals of the operation, minor corrective repairs and perform basic preventive maintenance and electrical safety tests to a wide variety of medical devices. During the internship, the student will be expected to participate in a wide variety of clinical procedures to learn the environment, application, problems, and the routine and abnormal situations that may occur in regards to the medical devices. Students will also be exposed to the organization and management of a clinical engineering department by attending various committees, investigating education and training for biomedical equipment technicians, investigating the risk based preventative maintenance system, investigating the clinical engineering department performance indicators, and investigating the required policy and procedures of a clinical engineering department. Students will be expected to use good communication and customer skills when working with co-workers, clinical personnel, patients, visitors and all others while conducting the internship. Students will be expected to document their activities as required by the course requirements as well as the requirements of the internship location. Students will be assigned an internship supervisor that they will take direction from on a daily basis. The student will be expected to work and follow the requirements of the internship site and follow all required policies and procedures. A biomedical engineering technology student manual will be provided to the student detailing all of the requirements for the internship Prerequisite: BE_T 204W, BE_T 206, BISC 4 or BIOL 141; must be the last class taken for the degree

BE_T 204W: Medical Equipment and Systems II

5 Credits

Principles of medical equipment: operation, application; circuit and block diagrams; preventive maintenance inspections; and troubleshooting
Solid state devices, diodes, power supplies, operational amplifiers, transistors, timing circuits, high power devices, circuits as applied to medical devices. BE T 205 Medical Electronics (4) BE T 205 introduces solid state devices and circuits as they apply to medical devices. This course begins with the fundamentals of solid state devices, diode models and applications, then application of these fundamentals in linear power supply design. Students design a theoretical linear power supply as a term project, applying the fundamentals of diodes, transformers, filters and regulators. Operational amplifiers, transistor devices and circuits is presented along with the applications of amplifiers, switches, filters and other related circuits. Special solid state and high power devices will be discussed and their applications to medical device circuits.

This course provides students with a broad exposure to a wide variety of solid state devices and their application to medical devices. Topics covered include: -Fundamentals of solid state principles -P-N junction, forward and reverse biasing -diode models: ideal, practical and complete -specialty diodes: zener and LED -diode specifications and testing -transformers: step up, step down & isolation -rectifier circuits: half and full wave -linear power supply: rectification, filters & regulation designs -Switching Mode Power Supply (SMPS) fundamentals -linear power supply design project -operational amplifiers: amplifiers, comparators, filters and others -transistors: BJT, JFET, MOSFET -special power devices: photo detectors, optoisolators, TRIAC, DIAC and others -timing circuits -tuned amplifiers & band width Topics are supported by laboratory exercises were students learn about solid state devices and power supplies.

Students are required to complete a theoretical design of a linear power supply with given specifications. Students are also required to prepare written laboratory reports outlining the laboratory activity and power supply design project. Reports are graded on technical quality, grammar, and professionalism. Students in BE T 205 are required to use computers to simulate electrical circuits and systems and also produce high quality laboratory reports.

Prerequisite: EET 105

BE_T 206: Medical Computers and Networks

4 Credits

Introduction to computer hardware, software and networks for medical equipment; PC and medical equipment hardware; networking fundamentals. BE T 206 Medical Computers and Networks (4) This course provides an introduction to computer hardware, software and networks used by medical equipment with an in-depth background of PC and medical equipment hardware and networking fundamentals. The topics covered include: Microsoft Office review and advanced applications; personal computer (PC) hardware fundamentals; formatting and sectoring hard drives; installing various Windows operating systems and other required software/drivers; networking hardware component fundamentals; administrator networking software settings and configurations; fundamentals of health level 7 (HL7) standards; fundamentals of digital imaging and communication in medicine (DICOM) standards; operation of DICOM viewer software for medical images; fundamentals of picture archive and communications systems (PACS) configurations for medical applications; fundamentals of The Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy and Security Rules in regards to medical equipment maintenance; creation of a simple PC network with several PCs and basic networking hardware components; creation of a simple physiological computer based network with several physiological devices and basic networking components; creation and testing of network cables using applicable tools and test equipment; troubleshoot and correct technical problems of a basic PC and medical equipment networks using appropriate software, tools and equipment; and analyzing and generating a written reports. Lectures will be supported by laboratory exercises in which the student learns about PC hardware, PC software, network hardware, network configuration and troubleshooting these systems. Students will be required to prepare written laboratory reports outlining the laboratory activity. Reports will be graded based both on their technical quality and their grammatical and professionalism. Students in BE T 206 will be required to use computers in both class and laboratory exercises to use software, create and configure networks for PCs and physiological monitors.

Prerequisite: BE T 201 , IST 220

BE_T 210: Troubleshooting Medical Equipment

3 Credits

Methods and strategies for troubleshooting medical equipment, systems and electronics components. BE T 210 Troubleshooting Medical Equipment (3) BE T 210 will provide students with methods and strategies for servicing medical equipment, systems and electronics components. Many different methods can be used to identify and solve problems that include using many different skill sets. This course introduced logical methods for troubleshooting medical devices including: equipment operation, application, normal and abnormal outcomes, tools, test equipment, simulators and analyzers. In addition to the technical skills of troubleshooting, the "soft" skills or "people"...
Skills are investigated. How to communicate with others and the customer skills will be introduced. While working with medical equipment, individuals need to have an awareness of infection control and the steps that must be followed to protect them, the patients and co-workers. Cleaning, handling and general safety methods will be discussed. Topics covered include: - Safety procedures; - Skill set requirements; - Test equipment, simulators, analyzers and tools; - Troubleshooting methods; - Troubleshooting components; - Troubleshooting systems; - Troubleshooting medical equipment; - Hands on troubleshooting skills; - Customer skills; - Infection Control

Prerequisite: BE_T 201

BE_T 296: Independent Studies

1-18 Credits/Maximum of 18

Creative projects, including research and design, that are supervised on an individual basis and that fall outside the scope of formal courses.

BE_T 297: Special Topics

1-9 Credits/Maximum of 9

Formal courses given infrequently to explore, in depth, a comparatively narrow subject which may be topical or of special interest.