INDUSTRIAL ENGINEERING (IE)

IE 100: Discover Industrial Engineering: First-Year Seminar
1 Credits

Informational First-year on Industrial Engineering as a career choice and profession; lab exercises; guest speakers; real world problems. I E 100S I E 100S Discover Industrial Engineering: First-Year Seminar (1) (FYS) The objective of this first-year seminar course is to provide information on industrial engineering as a career choice and as a profession. It is a fact that most first-year students have never heard of Industrial Engineering (I E), or the many varied opportunities that exist within the I E major. This course explores the many aspects of the major and also offers the opportunity to interact with I E faculty and students, something that is an uncommon occurrence during the first year of engineering study. Class time is used for a variety of activities including: interactive class sessions where students work in teams to analyze and solve applied "real-world" problems in industrial and manufacturing engineering; I E faculty guest speakers addressing career opportunities in a particular area within I E; Lab experiences or demonstrations; Alumni guest speakers or panels; Plant tours (1 per semester); I E student panels on topics such as Co-op. The class atmosphere is relaxed and there are no examinations. Homework assignments are given throughout the semester on relevant topics.

First-Year Seminar

IE 302: Engineering Economy
3 Credits

Principles and methods for analyzing the economic feasibility of technical alternatives leading to a decision or recommendation.

Prerequisite: MATH 141

IE 305: Product Design, Specification and Measurement
3 Credits

Principles of product design and specifications and methods for product verification. IE 305 Product Design, Specification and Measurement (3) Product Design, Specification and Measurements a first level junior course in manufacturing, required for all the baccalaureate students in the Department of Industrial and Manufacturing Engineering. It exposes students to the principles required for designing a product and developing the specifications for its components and the methods for product verification and checking conformance to specifications. Students taking this course should be familiar with introduction to engineering design and should have graphical communication skills.

Prerequisites: EDSGN 100

IE 306: Machining Process Design & Analysis
3 Credits

Application of Engineering Principles for the Design and Implementation of Economic and Effective Machining Processes. I E 306 Machining Process Design & Analysis (3) Machining Process Design & Analysis is an elective course within the Department of Industrial & Manufacturing Engineering that can be used to satisfy the undergraduate, manufacturing process course requirement. It will be offered both fall and spring semesters. Its purpose is to provide students with an in-depth experience into the science, engineering, and thought processes that are used to apply machining processes to economically convert raw materials into finished products. Students will learn how to design, analyze, implement, and troubleshoot machining processes and machining systems. Students taking this course must have previously completed I E 305, and have knowledge of produce specification, metrology, and computer aided design tools.

Prerequisite: I E 305, I E 322

IE 307: Additive Manufacturing Process and Reverse Engineering
3 Credits

The study and application of rapid prototyping technologies in design and manufacturing. I E 307 Additive Manufacturing Process and Reverse Engineering (3) Speed to market is an essential element of competitiveness. New manufacturing technologies, driven by CAD, such as Additive Manufacturing (AM), Rapid Tooling (RT), and Reverse Engineering are making it possible for companies to significantly cut design and manufacturing cycles times. This course will explore these new manufacturing technologies, study the basic processes and their role in the design and manufacturing cycle, and provide hands on experience with these processes. Students will be able to use process models, characteristics and capabilities of specific AM processes such as Stereo Lithography Process, Fused Deposition Modeling, Selective Laser Sintering, Electron Beam Melting, and 3-D Printing to compare different processes. The students will study the use of these processes for Rapid Tooling applications for sand casting, investment casting, and injection molding. The students will be able to describe the role of CAD and Reverse Engineering in providing the data needed and current technological challenges for AM. The students will be able to develop cost models for the processes to evaluate the production economics. Students will gain hands on experience with the processes and reverse engineering through the laboratory component.

Prerequisite: I E 305

IE 311: Principles of Solidification Processing
3 Credits

Discussion, laboratory practices, and laboratory experiments covering principles of metal casting and joining, nondestructive testing, and nonmetallic processing.

Prerequisite: I E 305

IE 312: Product Design and Manufacturing Processes
3 Credits

Theory and principles of mechanical design specification, verification, and manufacturing. Industrial engineering majors may not schedule this course.

Prerequisite: E MCH213, E MCH210H or E MCH210; Prerequisite or concurrent: E SC 414M or MATSE259
IE 322: Probabilistic Models in Industrial Engineering
3 Credits
The study and application of probability theory in the solution of engineering problems. IE 322 Probabilistic Models in Industrial Engineering (3) Probabilistic Models in Industrial Engineering is a first level junior course required for all the baccalaureate students in the Department of Industrial and Manufacturing Engineering. It will be offered in fall and spring semesters. It exposes students to the probability theory and models and discrete and continuous probability distributions which are necessary for solving real life engineering problems with uncertainty. Reliability modeling, one such problem of interest to the manufacturers and consumers, will be taught in this course. The course will also cover sampling distributions and point and interval estimation of mean, variance and proportion. Students taking this course should be familiar with elementary algebra, and differential and integral calculus.
Prerequisite: MATH 141

IE 323: Statistical Methods in Industrial Engineering
3 Credits
The study and application of statistics in the solution of engineering problems. IE 323 Statistical Methods in Industrial Engineering (3) Statistical Methods in Industrial Engineering is a second level junior course required for all the baccalaureate students in the Department of Industrial and Manufacturing Engineering. It will be offered in fall and spring semesters. It exposes students to the statistical tools such as estimation, testing of hypotheses, control charts, process capability indexes, gage R & R studies, simple regression and design of experiments, which are necessary for analyzing and solving real life engineering problems using data. Students taking this course should be familiar with the following topics taught in the first course in probability offered in the department: Probability concepts, Random variables, Independence, Probability Distributions (both discrete and continuous), Mathematical Expectation, Variation and Binomial and Standard Normal tables.
Prerequisite: IE 322

IE 327: Introduction to Work Design
3 Credits
Job analysis, cognitive and physical considerations in design of work, work measurement. IE 327 Introduction to Work Design (3) Introduction to Work Design is a first level junior course required for all the baccalaureate students in the Department of Industrial and Manufacturing Engineering. It will be offered in fall and spring semesters. It exposes students to the basic introductory tools required for analyzing and designing both the job and the worksite in a cost-effective manner, as well as measuring the resulting output. These tools include human information processing, basic auditory and visual displays, anthropometry and musculoskeletal principles, cumulative trauma disorders, work measurement and stopwatch time study. Students taking this course should be familiar with the basic concepts of cost.
Prerequisite: MATH 141 Prerequisite or concurrent: E MCH211 or E MCH210

IE 330: Engineering Analytics
3 Credits
The study and application of Computing, Information Technology and Analytics to Industrial Engineering. IE 330 Engineering Analytics (3) Engineering Analytics is a required course for all baccalaureate students in the Industrial Engineering major. It provides students with a quantitative background in descriptive analytics which deals with data mining, predictive analytics which deals with forecasting, and the use of Big Data in analysis. Examples of analytics will be presented in various industries including manufacturing, healthcare, and distribution. The students will learn to work in settings to make data-informed decisions from large data sets. Students taking this course should be familiar with differential and integral calculus, statistics, and basic computing.
Prerequisite: IE 322 and CMPSC200, CMPSC201 or CMPSC202

IE 399: Foreign Studies–Industrial Engineering
1-12 Credits/Maximum of 12
Courses offered in foreign countries by individual or group instruction.
International Cultures (IL)

IE 402: Advanced Engineering Economy
3 Credits
Concepts and techniques of analyses useful in evaluating engineering projects under deterministic and uncertain conditions.
Prerequisite: IE 302, IE 322, IE 405

IE 405: Deterministic Models in Operations Research
3 Credits
Deterministic models in operation research including linear programming, flows in networks, project management, transportation and assignment models and integer programming. IE 405 Deterministic Models in Operations Research (3) This course will be an introduction to deterministic modeling. In particular, the student will learn to formulate linear programs, network models, and integer programs. The student will also learn solution strategies such as the simplex method and branch and bound. Duality and sensitivity analysis will be covered along with their economic interpretation. Optimization software will be used for solving the formulations. Practical examples along with a detailed case study will be presented to help the student to synthesize the topic. This will be a required course for all undergraduate students pursuing a baccalaureate degree in Industrial Engineering.
Prerequisite: MATH 220

IE 408: Cognitive Work Design
3 Credits
Design and evaluation of cognitive work, including the human/computer interface, visual displays, software design, and automated system monitoring, with emphasis on human performance. IE 408 Cognitive Work Design (3) Cognitive Work Design is a senior level course offered in the Department of Industrial and Manufacturing Engineering. It is one of two courses which follow IE 327, Introduction to Work Design. This course focuses on the cognitive part of human factors and work design. It will be offered in fall and spring semesters. This course will
enable students to design, implement, and evaluate human-computer interfaces according to principles outlined in foundational human-computer interaction readings. Students will be engaged in the active learning of design, programming, and usability concepts by way of building interfaces on the personal computer. Students taking this course should be familiar with computer programming and introduction to work design.

Prerequisite: I E 327

IE 418: Human/Computer Interface Design

3 Credits

Design and evaluation of the human/computer interface, including human performance, visual displays, software design, and automated system monitoring. IE 418 Human/Computer Interface Design (3) The objective of this course is to enable students to design, implement, and evaluate human-computer interfaces according to principles outlined in foundational human-computer interaction readings. Students will be engaged in the active learning of design, programming, and usability concepts by way of building interfaces on the personal computer as well as on the Palm computing platform. A major component of the course is the capstone design project for which student teams will communicate with users to design, implement, and assess interfaces to improve existing work processes in an actual work domain (e.g., safety office, power plant).

Prerequisite: I E 327 and CMPSC200, CMPSC201 or CMPSC202

IE 419: Work Design - Productivity and Safety

3 Credits

Methods improvement, physical work design, productivity, work measurement; principles and practice of safety. IE 419 Work Design - Productivity and Safety (3) Work Design - Productivity and Safety is a senior level course offered in the Department of Industrial and Manufacturing Engineering. It is one of two courses which follow I E 327, Introduction to Work Design. This course focuses on the methods improvement physical work design, productivity, work measurement; principles and practice of safety. It will be offered in fall and spring semesters. This course will enable students to perform work measurement: develop an MTM analysis, and carry out a work sampling study. Students taking this course are expected to understand basic concepts of work design.

Prerequisite: I E 327

IE 424: Process Quality Engineering

3 Credits

Statistical methods for engineering process characterization and improvement. For non-Industrial Engineering majors. IE 424 Process Quality Engineering (3) This course will provide students with probabilistic and statistical methods required to improve the quality of products and processes. It will start with the introduction to quality culture and the key elements of quality improvement. Then the methods for data presentation and interpretation are discussed. Next, the basic probability concepts and commonly used probability distributions are taught followed by statistical concepts, such as sampling distributions, point and interval estimation, and hypotheses testing. The concepts and methods of statistical tools required for process selection and improvement such as process capability indexes and control charts are discussed next. The course ends with the coverage of simple and multiple regression models.

Prerequisite: MATH 141 and prerequisite or concurrent: MATH 220 or B E 301; Concurrent: MATH 220 or B E 301

IE 425: Stochastic Models in Operations Research

3 Credits

This course will be an introduction to the modeling of stochastic systems. The student will learn about Poisson processes, Markov Chains, Dynamic Programming, and Queuing systems; both model formulations and solutions strategies. The students will learn several applications of these models in manufacturing and service systems, so that they can synthesize the lecture material. The student will study the topic of inventory theory, including fundamental trade-offs, economic order quantity (EOQ) modeling, and stochastic models. This will be a required course for all undergraduate students pursuing a baccalaureate degree in Industrial Engineering.

Prerequisites: MATH 220, I E 322

IE 428: Metal Casting

3 Credits

Application of engineering principles to the design of castings; casting of ferrous and nonferrous alloys; laboratory and simulation projects.

Prerequisite: I E 311, I E 312, or METAL408W

IE 433: Regression Analysis and Design of Experiments

3 Credits

Theory and Application of Regression Analysis and Design of Experiments to build models and optimize process and product parameters. IE 433 Regression Analysis and Design of Experiments (3) Regression Analysis and Design of Experiments is an elective course for the baccalaureate students in the Department of Industrial and Manufacturing Engineering. It will be offered in the spring semester. It exposes students to the two important statistical tools which are regression analysis and design of experiments. The specific topics include simple and multiple regression analysis, 2k full and fractional designs and analysis and Taguchi's orthogonal arrays. Students taking this course should be familiar with the following topics taught in the second course in probability and statistics offered in the department. Properties of point estimators, sampling distributions, testing of hypotheses, and introduction to linear regression and design of experiments.

Prerequisite: I E 323

IE 434: Statistical Quality Control

3 Credits

Statistical techniques for univariate and multivariate monitoring of independent and autocorrelated processes; foundations of quality control and improvement. IE 434 Statistical Quality Control (3) This course is about the use of modern statistical methods for process and product improvement. The goal is to impart a sound understanding of the principles and basis for applying them in a variety of practical situations in manufacturing and service fields. The course will give an overview of the basic statistical methods and then concentrate on some of the
more useful recent developments including univariate and multivariate techniques to monitor autocorrelated data, analyzing process capability, and improving process quality in short-run environments. The course objectives are to: (1) understand the assumptions and theoretical foundations of process monitoring; (2) know how to select, set up, and use monitoring charts effectively depending on the system characteristics; and (3) understand the basic business and economic principles of process monitoring.

Prerequisite: I E 323

IE 436: Six Sigma Methodology

3 Credits

Techniques for structured problem-solving to improve the quality and cost of products and processes. I E 436 Six Sigma Methodology (3) Six Sigma is a structured, quantitative approach to improving the quality and cost of products and processes. It provides a framework for quality improvement that builds upon statistical tools to achieve business results. Although statistical techniques are emphasized throughout, the course has a strong engineering and management orientation that will prepare students for synthesizing the material that comprises the Six Sigma body of knowledge. Important aspects of the Six Sigma approach include a strong focus on the customer, proactive management, fact-based decision-making, and interdisciplinary collaborations. The course objectives are: (1) to give students a fundamental understanding of and experience with solving a problem using the structured problem-solving approach of Define-Measure-Analyze-Improve-Control (DMAIC); (2) to provide an opportunity for students to solve or be involved with solving business problems with statistical tools; and (3) to help students build confidence in their business sense and statistical skills.

Prerequisite: I E 323

IE 453: Simulation Modeling for Decision Support

3 Credits

Introduction of concepts of simulation modeling and analysis, with application to manufacturing and production systems. I E 453 Simulation Modeling for Decision Support (3)Simulation Modeling for Decision Support is a senior level course offered in the Department of Industrial and Manufacturing Engineering. It is the third course in operations research offered to the undergraduate students. The objective of this course is for students to learn to appropriately apply discrete event simulation modeling for decision support in IE problems through developing skills in model building, simulation output analysis, and communication of technical information and conclusions drawn from data analysis. Students taking this course should be familiar with computer programming and operations research techniques.

Prerequisite: CMPSC200, CMPSC201 or CMPSC202 and I E 323 and I E 425

IE 454: Applied Decision Analysis

3 Credits

Theory and practice of decision analysis applied to engineering problems.

Prerequisite: I E 322

IE 456: Industrial Robot Applications

3 Credits

Introduction to robotics, with emphasis on robot selection, programming, and economic justification for manufacturing applications. I E 456 Industrial Robot Applications (3) This course is a technical elective, and is normally taken by students in their Senior years. In this course, students learn about present and future status of robot applications, and are required to apply fundamental knowledge of physics and mathematics to develop software to analyze and control robots. The course deals with mechanics and control of robot manipulators and wheeled mobile robots. First, students are taught to analyze 3-D kinematics, statics and dynamics of robot manipulators. Then, control algorithms for robot manipulators are presented. Sensors, actuators and softwares used in industrial robots are discussed. In the end, kinematics and control of wheeled mobile robots are presented. During this course, application of computer, particularly Matlab, is emphasized as much as possible.

Prerequisites: EMCH 212, ME 360; ME 367

IE 460: Service Systems Engineering

3 Credits

Use of quantitative models and methods for analysis, design and control of service systems. I E 460 Service Systems Engineering (3) This course focuses on using operations research methods such as mathematical programming, network analysis and applied probability to solve problems that arise in service systems. The lecture topics will include measuring service quality, methods for evaluating service systems, financial engineering & portfolio optimization, supply chain design & operations, manpower planning & scheduling, and revenue management. Several case studies will be used to illustrate applications. Course grades are based on homework, case studies, mini-project, midterm and final exams.

Prerequisite: I E 322 and I E 405

IE 462: Introduction to Expert Systems

3 Credits

Building expert systems in general; emphasis on knowledge representation and inference mechanisms in the manufacturing domain.

Prerequisite: CMPSC200, CMPSC201 or CMPSC202 and I E 323

IE 463: Computer Aided Design and Manufacturing

3 Credits

Three dimensional modeling and manufacture of parts and assemblies using Computer Aided Design and manufacturing software, and numerically controlled machines. I E 463 Computer Aided Design and Manufacturing (3) The objective of this course is to teach the students the fundamentals underlying computer aided design (CAD) and computer aided manufacturing (CAM). The students will learn the drawing elements for CAD, including the coordinate systems, the fundamentals of 3D modeling techniques and basics such as wireframe models, surface and solid models and parametric modeling. The course will include application of CAM techniques to CNC machines, which consists of programming basics, machine setup and tooling systems. The data issues such as representation formats, data exchange and translation for integration of CAD/CAM will also be addressed.
Prerequisite: I E 305

IE 466: Concurrent Engineering

3 Credits

Concurrent engineering methods for product/process development, capturing customer requirements, insuring manufacturability and serviceability.

Prerequisite: MATH 141, MATH 220

IE 467: Facility Layout and Location

3 Credits/Maximum of 3

Analytical and computational methods for facility layout designs, material handling systems and equipment, and location. IE 467 Facility Layout and Material Handling (3) Facilities planning and design is the process of locating and laying out the of industrial and service facilities to best support the purpose of the facility while respecting constraints on resources such as space and budget. The facility planning function involves strategic, tactical and operational decisions depending on the nature of the facility. In this course, we address both the layout and the location of facilities. The layout problem involves a discussion of the arrangement of departments within a plant, the design of material handling systems and the design of storage and warehousing systems. Structural and architectural design questions are NOT addressed in this course. We shall also consider simplifications to the manufacturing process that result in a simplification of the layout problem. Finally, we will investigate a range of facility location problems, including median and center location problems as well as some advanced variants. One of the objectives of this course is also to familiarize the student with the analytical and computer tools that can be used for facility planning and other production and operations management problems.

Prerequisite: I E 322, I E 405

IE 468: Optimization Modeling and Methods

3 Credits

Mathematical modeling of linear, integer, and nonlinear programming problems and computational methods for solving these classes of problems. IE 468 Optimization Modeling and Methods (3) This course provides an analytic treatment of optimization models in linear, integer, and nonlinear programming. In particular, the course is concerned with the development of mathematical optimization models and computational solution techniques for solving these problems. The mathematical modeling of real-world applications is complemented with the use of modeling software such as LINGO or GAMS (General Algebraic Modeling System), which allows the user to readily develop large-scale mathematical models. The course also considers solution techniques for solving these optimization problems. Students will develop a basic understanding of the solution techniques through actual implementation of simple algorithms, as well as the use of commercial software such as those provided by LINDO, LINGO, and GAMS.

Prerequisite: I E 405, MATH 231

IE 469: Global Industrial Engineering Experience

1 Credits

Students will learn how to prepare for a short term, professional exchange in a foreign nation. Students will then travel to a designated university within a foreign nation for the purpose of a five day cultural and professional exchange. IE 469 Global Industrial Engineering Experience (1) This course will teach industrial engineering students how to prepare for a short term, professional exchange in a foreign nation and how Industrial & Manufacturing Engineering education and practice is carried out in a foreign nation. Students will be required to research and report on one or more industries in a designated foreign nation. Their report will focus on the products and/or services produced by these industries, the processes employed, known use of industrial and manufacturing engineers and/or practice, and their domestic and global standing. Students will travel to a designated university within that nation for the purpose of a one week cultural exchange. The designated university will have an Industrial Engineering, Production Engineering, and/or Manufacturing Engineering program. Information about the international destination and the dates of travel will be provided on the course syllabus each semester. During this period, students will: 1. tour the department and engineering laboratories to learn about the education and research facilities at their host university 2. attend engineering classes within the host university to learn about the engineering topic matter as well as how foreign engineering classes are conducted 3. give and receive engineering presentations with their host university students 4. tour the local community to learn about their culture 5. tour local manufacturing industries and interact with local Industrial/Mfg engineers to learn about the companies as well as how industrial & manufacturing engineering is specifically practiced

Prerequisite: 5th semester standing or higher

IE 470: Manufacturing System Design and Analysis

3 Credits

Contemporary design and analysis methodologies used to organize systems for economic manufacture of products. IE 470 Manufacturing System Design and Analysis (3) Manufacturing System Design and Analysis is a senior level course in manufacturing, required for all the baccalaureate students in the Department of Industrial and Manufacturing Engineering. Students will be exposed to the contemporary techniques used to design and analyze manufacturing systems for economic manufacture of products. Students will learn to design manufacturing systems (human and automated) to satisfy differing types of product demand. Students taking this course should be familiar with introduction to manufacturing and product specifications and introduction to manufacturing process design and analysis.

Prerequisite: Prerequisite or concurrent: with manufacturing process elective

IE 478: Retail Services Engineering

3 Credits

Introduction to retail services operations, process models, and application of information technologies to enhance productivity and profitability. IE 478 Retail Services Engineering (3) Objective of this course is to understand modern retail industry with focus on their operations and information technologies that are used in such systems. The course starts with an overview of the basics of types of retailing, their channels, and economics of their operations. Much of the emphasis in the course is on processes and information technologies used in retail industry such as point of sale systems, barcode, RFID/EPC, global data synchronization, EDI, XML, data warehouse, analytics for decision support and supply chain management. Several case studies will be used to draw out the application of tools and techniques covered in the course.
Course includes a group project focused on retail industry. Specific topics will include: Global retail industry, Multi-channel retailing, Performance and metrics, Pricing, Layout, Information Systems and SCM, Barcode and RFID, Data warehouse and analytics, Case studies. This course is a senior undergraduate level technical elective course in the Industrial & Manufacturing Engineering Department.

Prerequisite: IE 330

IE 479: Human Centered Product Design and Innovation

3 Credits

Consumer product design for a global market, incorporating human factors principles and user desires in a multicultural perspective. EDSGN (IE) 479 Human Centered Product Design and Innovation (3) This course will focus on consumer product design for a global market, incorporating human factors and ergonomics principles as well as user needs and emotional desires. The students will be led through product design process, various product design strategies, product planning, managing the development process, product evaluation, decision making tools, and market entry. Special emphasis will be placed on user centered design, incorporating user characteristics, user needs and emotional desires (including Kansei engineering approaches), survey methodology, and usability testing. To emphasize the multicultural perspectives in today's global product design, interdisciplinary teams from two universities on opposite sides of the globe will apply these principles on actual industrial product designs for leading consumer product manufacturers.

Prerequisite: IE 408 or IE 419 or equivalent

Cross-listed with: EDSGN 479

IE 480: Capstone Design Project

3 Credits

Industry-based senior capstone design project emphasizing manufacturing systems, service systems, and information systems in an interdisciplinary setting. IE 480W Capstone Design Project (3) Students will develop “real world” engineering project experience through an industry-based project. Projects will focus on manufacturing systems, service systems, and/or information systems. Students will work in teams to complete the projects, where the teams will be interdisciplinary and composed of students from within the major with different areas of expertise and students from other majors as needed. Students interested in taking this course should have senior standing and be familiar with basic principles in manufacturing, operations research, and human factors engineering. Students will be evaluated through in-class participation, and a group project that consists of weekly communication with the project sponsor along with three design reviews, interim written reports and a final report, presentation and poster. This is a Writing-Intensive course in the department and hence students will be given opportunities to practice writing throughout the semester in multiple writing assignments.

Prerequisites: IE 302, IE 305, IE 323, IE 327, IE 405. Prerequisite or Concurrent: IE 330

Writing Across the Curriculum