MATH 2: Elementary Geometry With Problem Solving
4 Credits
Geometric congruence, similarity, area, surface area, volume, introductory trigonometry; emphasis on logical reasoning skills and the solution of applied problems. This course may not be used to satisfy the basic minimum requirements for graduation in any baccalaureate degree program.

MATH 3: Basic Skills
3 Credits
Natural numbers; integers; rational numbers; decimals; ratio, proportion; percent; graphs; applications. Students who have passed MATH 001 may not schedule this course for credit. This course may not be used to satisfy the basic minimum requirements for graduation in any baccalaureate degree program.

Enforced Prerequisite: Satisfactory performance on the mathematics placement examination.

MATH 4: Intermediate Algebra
3 Credits
Algebraic expressions; linear, absolute value equations and inequalities; lines; systems of linear equations; integral exponents; polynomials; factoring. This course may not be used to satisfy the basic minimum requirements for graduation in any baccalaureate degree program.

Enforced Prerequisite: MATH 3 or satisfactory performance on the mathematics placement examination.

MATH 10: Preparation Skills for Success in Mathematics
1 Credits/Maximum of 4
A foundation course that emphasizes study skills and reviews basic mathematical principles.

Concurrent: math 003-201

MATH 17: Finite Mathematics
3 Credits
Introduction to logic, sets, probability.

Prerequisite: 2 units of high school mathematics
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 18: Elementary Linear Algebra
3 Credits
Linear functions; systems of equations; matrices; linear programming.

Prerequisite: 2 units of high school mathematics
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 21: College Algebra I
3 Credits
Quadratic equations; equations in quadratic form; word problems; graphing; algebraic fractions; negative and rational exponents; radicals.

Enforced Prerequisite: MATH 4 or satisfactory performance on the mathematics placement examination.
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 22: College Algebra II and Analytic Geometry
3 Credits
Relations, functions, graphs; polynomial, rational functions, graphs; word problems; nonlinear inequalities; inverse functions; exponential, logarithmic functions; conic sections; simultaneous equations.

Enforced Prerequisite: MATH 21 or satisfactory performance on the mathematics placement examination.
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 26: Plane Trigonometry
3 Credits
Trigonometric functions; solutions of triangles; trigonometric equations; identities.

Enforced Prerequisite: MATH 21 or satisfactory performance on the mathematics placement examination.
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 30: Problem Solving
3 Credits
Concepts in problem solving; reducing new problems to old ones; techniques for attacking problems; building mathematical models.

MATH 33: Mathematics for Sustainability
3 Credits
Mathematical analysis of sustainability; measurement, rates of change, risk and probability, networks; examples. MATH 033 Mathematics for
Sustainability (3) (GQ) This course is intended to be one of several offered by the mathematics department with the goal of helping students from non-technical majors partially satisfy their general education quantification. It is designed to provide an introduction to various mathematical modeling techniques, with an emphasis on examples related to environmental and economic sustainability. The course may be used to fulfill three credits of the GQ requirement for some majors, but it does not serve as a prerequisite for any mathematics courses and should be treated as a terminal course. The course will provide students with the mathematical background and quantitative reasoning skills necessary to engage as informed citizens in discussions of sustainability related to resources, pollution, recycling, economic change, and similar matters of public interest. These include the four key ideas of "measuring" (representing information by numbers, problems of measurement, units, estimation skills); "changing" (quantities changing with time, rates of change, the distinction between stocks and flows, simple models, interest and discount rates); "risking" (probability, expectation, skew distributions and upside vs downside risks, uses and limitations of cost-benefit analysis, risk v. uncertainty); and "networking" (graphs, social networks, the strength of weak ties, social capital).

Prerequisite: one unit of algebra or MATH 004

General Education: Quantification (GQ)

MATH 34: The Mathematics of Money

3 Credits

This course will provide students with the mathematical background and quantitative skills needed to make sound financial decisions. This course introduces personal finance topics including simple interest, simple discount, compound interest, annuities, investments, retirement plans, inflation, depreciation, taxes, credit cards, mortgages, and car leasing. Students will learn how to use linear equations, exponential and logarithmic equations, and arithmetic and geometric sequences to solve real-world financial problems. Students will answer questions such as, What is the most they can afford to pay for a car? How much do they need to invest in their 401(k) account each month to retire comfortably? What credit card is the best option? In a society where consumers are presented with a vast array of financial products and providers, students are enabled to evaluate options and make informed, strategic decisions. This course may be used by students from non-technical majors to satisfy 3 credits of their General Education Quantification (GQ) requirement. This course does not serve as a prerequisite for any mathematics courses and should be treated as a terminal course.

Enforced Prerequisite: MATH 4 or satisfactory performance on the mathematics placement exam

Bachelor of Arts: Quantification

General Education: Quantification (GQ)

GenEd Learning Objective: Crit and Analytical Think

GenEd Learning Objective: Key Literacies

MATH 40: Algebra, Trigonometry, and Analytic Geometry

5 Credits

Concepts of algebra; equations; inequalities; functions; graphs; polynomial and rational functions; exponential and logarithmic functions; trigonometry; analytic geometry; complex numbers.

Enforced Prerequisite: Satisfactory performance on the mathematics placement examination.

Bachelor of Arts: Quantification

General Education: Quantification (GQ)

MATH 41: Trigonometry and Analytic Geometry

3-4 Credits

Straight lines; circles; functions and graphs; graphs of polynomial and rational functions; exponential and logarithmic functions; trigonometry; conic sections.

Enforced Prerequisite: MATH 21 or satisfactory performance on the mathematics placement examination.

Bachelor of Arts: Quantification

General Education: Quantification (GQ)

MATH 81: Technical Mathematics I

3 Credits

Algebraic expressions, equations, systems of equations, trigonometric functions, graphs, solution of triangles, vectors.

Prerequisite: MATH 004 or satisfactory performance on the mathematics placement examination

Bachelor of Arts: Quantification

General Education: Quantification (GQ)
MATH 82: Technical Mathematics II
3 Credits
Exponents, radicals, complex numbers, theory of equations, inequalities, half angle and double angle formulas, inverse trigonometric functions, exponential, logarithm, conic sections.

Enforced Prerequisite: MATH 81
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 83: Technical Calculus
4 Credits
Limits, derivatives of algebraic functions, implicit differentiation, related rates, applied extrema problems, curve sketching, integration, numerical integration, applications of integration, integration techniques, differential equations.

Enforced Prerequisite: MATH 82
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 97: Special Topics
1-9 Credits/Maximum of 9
Formal courses given infrequently to explore, in depth, a comparatively narrow subject which may be topical or of special interest.
Bachelor of Arts: Quantification

MATH 110: Techniques of Calculus I
4 Credits
Functions, graphs, derivatives, integrals, techniques of differentiation and integration, exponentials, improper integrals, applications. Students may take only one course for credit from MATH 110, 140, 140A, and 140B.

Enforced Prerequisite: Math 22 and Math 26 or Math 26 and satisfactory performance on the mathematics placement examination or Math 40 or Math 41 or satisfactory performance on the mathematics placement examination.
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 140: Calculus With Analytic Geometry I
4 Credits
Functions, limits, analytic geometry; derivatives, differentials, applications; integrals, applications. Students may only take one course for credit from MATH 110, 140, 140A, 140B, and 140H.

Enforced Prerequisite: Math 22 and Math 26 or Math 26 and satisfactory performance on the mathematics placement examination or Math 40 or Math 41 or satisfactory performance on the mathematics placement examination.
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 140A: Calculus, Analytic Geometry, Algebra, and Trigonometry
6 Credits
Review of algebra and trigonometry; analytic geometry; functions; limits; derivatives, differentials, applications; integrals, applications. Students may take only one course for credit from MATH 110, 140, 140A, and 140B.

Enforced Prerequisite: Math 22 and Math 26 or Math 26 and satisfactory performance on the mathematics placement examination or Math 40 or Math 41 or satisfactory performance on the mathematics placement examination.
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 140B: Calculus and Biology I
4 Credits
Functions, limits, analytic geometry; derivatives, differentials, applications from biology; integrals, applications from biology. Students may take only one course for credit from MATH 110, 140, 140A, and 140B.

Enforced Prerequisite: Math 22 and Math 26 or Math 26 and satisfactory performance on the mathematics placement examination or Math 40 or Math 41 or satisfactory performance on the mathematics placement examination.
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 140E: Calculus with Engineering Applications I
4 Credits
Functions; limits; analytic geometry; derivatives; differentials; applications; integrals, applications. MATH 140E Calculus with Engineering Applications I (4) (GQ) MATH 140E enriches the regular MATH 140 syllabus by adding weekly applied problems, a small number of laboratory sessions, and a major group project for which both written and oral presentation is required. It is a rigorous calculus course with additional motivation and applications in the engineering sciences. The core material is the same as MATH 140. MATH 140E provides an alternative to the regular MATH 140 for engineering majors. This course addresses the additional needs of engineering majors with regard to problem formulation and the interpretation of their mathematical solutions. The prerequisite for the course is MATH 022, 026; or MATH 040, 041; or satisfactory performance in the mathematics proficiency examination. Six sections of this course are offered every
Fall semester. Course evaluation is based on quizzes, weekly applied problems, two midterms, a group project, and a final examination.

Enforced Prerequisite: Math 22 and Math 26 or Math 26 and satisfactory performance on the mathematics placement examination or Math 40 or Math 41 or satisfactory performance on the mathematics placement examination.

Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 140G: Calculus with Earth and Mineral Sciences Applications I

4 Credits

Functions, limits, analytic geometry; derivatives, differentials, applications from the earth and mineral sciences; integrals, applications from the earth and mineral sciences. Students may only take one course for credit from MATH 110, 140, 140A, 140B, 140E, and 140G.

MATH 140G Calculus with Earth and Mineral Sciences Applications I

4 Credits

This course is the first in a sequence of three calculus courses designed for students in the earth and mineral sciences and related fields. Topics include limits of functions, continuity; the definition of the derivative, various rules for computing derivatives (such as the product rule, quotient rule, and chain rule), implicit differentiation, higher-order derivatives, solving related rate problems, and applications of differentiation such as curve sketching, optimization problems, and Newton’s method; the definition of the definite integral, computation of areas, the Fundamental Theorem of Calculus, integration by substitution, and various applications of integration such as computation of areas between two curves, volumes of solids, and work. The typical delivery format for the course is four 50-minute lectures per week, with typical assessment tools including examinations, quizzes, homework, and writing assignments.

Enforced Prerequisite: Math 22 and Math 26 or Math 26 and satisfactory performance on the mathematics placement examination or Math 40 or Math 41 or satisfactory performance on the mathematics placement examination.

Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 140H: Honors Calculus with Analytic Geometry I

4 Credits

Honors course in functions, limits; analytic geometry; derivatives, differentials, applications; integrals, applications. Students may only take one course for credit from MATH 110, 140, 140A, 140B, and 140H.

MATH 140H Honors Calculus with Analytic Geometry I

4 Credits

This course meets the Bachelor of Arts degree requirements. This course is the first in a sequence of three calculus courses designed for students in engineering, science, and related fields. Topics include limits of functions, continuity; the definition of the derivative, various rules for computer derivatives (such as the product rule, quotient rule, and chain rule), implicit differentiation, higher-order derivatives, solving related rate problems, and applications of differentiation such as curve sketching, optimization problems, and Newton’s method; the definition of the definite integral, computation of areas, the Fundamental Theorem of Calculus, integration by substitution, and various applications of integration such as computation of areas between two curves, volumes of solids, and work. The typical delivery format for the course is four 50-minute lectures per week, with typical assessment tools including examinations, quizzes, homework, and writing assignments. In contrast to the non-honors version of this course, the honors version is typically more theoretical and will often include more sophisticated problems. Moreover, certain topics are often discussed in more depth and are sometimes expanded to include applications which are not visited in the non-honors version of the course.

Enforced Prerequisite: Math 22 and Math 26 or Math 26 and satisfactory performance on the mathematics placement examination or Math 40 or Math 41 or satisfactory performance on the mathematics placement examination.

Bachelor of Arts: Quantification
General Education: Quantification (GQ)

Honors

MATH 141: Calculus with Analytic Geometry II

4 Credits

Derivatives, integrals, applications; sequences and series; analytic geometry; polar coordinates. Students may take only one course for credit from MATH 141, 141B, and 141H.

Enforced Prerequisite: MATH 140 or MATH 140A or MATH 140B or MATH 140E or MATH 140G or MATH 140H.

Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 141B: Calculus and Biology II

4 Credits

Derivatives, integrals, applications from biology; sequences and series; analytic geometry; polar coordinates. Students may take only one course for credit from MATH 141 and 141B.

Enforced Prerequisite: MATH 140 or MATH 140A or MATH 140B or MATH 140E or MATH 140G or MATH 140H.

Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 141E: Calculus with Engineering Applications II

4 Credits

Integration, applications; sequences and series; parametric equations, application. MATH 141E Calculus with Engineering Applications II (4) (GQ) MATH 141E enriches the regular MATH 141 syllabus by adding weekly applied problems, a small number of laboratory sessions, and a major group project for which both written and oral presentations are required. It is a rigorous calculus course with additional motivation and applications in the engineering sciences, designed to enhance the student’s problem solving skills and their understanding of how calculus is applied to real world problems. The core material is the same as MATH 141. MATH 141E provides an alternative to the regular MATH 141 for engineering majors. This course addresses the additional needs of engineering majors with regard to problem formulation and the interpretation of their mathematical solutions. The prerequisite of the course is MATH 140, 140A, 140B, or 140E; or the consent of the instructor. Six sections of this course are offered every Spring semester. Course evaluation is based on quizzes, weekly applied problems, two midterms, a group project, and a final examination.
Enforced Prerequisite: MATH 140 or MATH 140A or MATH 140B or MATH 140E or MATH 140G or MATH 140H.
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 141G: Calculus with Earth and Mineral Sciences Applications II

4 Credits

Derivatives, integrals, applications from the earth and mineral sciences; sequences and series; analytic geometry; polar coordinates. Students may take only one course for credit from MATH 141, 141B, 141E, and 141G. MATH 141G Calculus with Earth and Minerals Applications II (4) (GQ) This course is the second in a sequence of three calculus courses designed for students in the earth and mineral sciences and related fields. Topics include inverse functions of exponential, logarithmic, and trigonometric functions; indeterminate forms and L'Hopital's rule; various techniques of integration, including integration by parts, trigonometric integrals, trigonometric substitution, and partial fractions; improper integration; infinite sequences and series; tests for convergence and divergence of infinite series, including the integral test, comparison tests, ratio test, root test; power series, Taylor and Maclaurin Series; parametric equations and polar coordinates. The typical delivery format of the course is four 50-minute lectures per week, with typical assessment tools including examinations, quizzes, homework, and writing assignments.

Enforced Prerequisite: MATH 140 or MATH 140A or MATH 140B or MATH 140E or MATH 140G or MATH 140H.
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 141H: Honors Calculus with Analytic Geometry II

4 Credits

Derivatives, integrals, applications from the earth and mineral sciences; sequences and series; analytic geometry; polar coordinates. Students may take only one course for credit from MATH 141, 141B, and 141H. . . .

Enforced Prerequisite: MATH 140 or MATH 140A or MATH 140B or MATH 140E or MATH 140G or MATH 140H.
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 197: Special Topics

1-9 Credits/Maximum of 9

Formal courses given infrequently to explore, in depth, a comparatively narrow subject which may be topical or of special interest.

Bachelor of Arts: Quantification

MATH 199: Foreign Studies

1-12 Credits/Maximum of 12

Courses offered in foreign countries by individual or group instruction.

Bachelor of Arts: Quantification
International Cultures (IL)

MATH 200: Problem Solving in Mathematics

3 Credits

Fundamental concepts of arithmetic and geometry, including problem solving, number systems, and elementary number theory. For elementary and special education teacher certification candidates only. A student who has passed EDMTH 444 may not take MATH 200 for credit.

MATH 200H: Problem Solving in Mathematics

3 Credits

Mathematical ways of thinking, number sequences, numeracy, symmetry, regular polygons, plane curves, methods of counting, probability and data analysis. For elementary and special education teacher certification candidates only.

Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 201: Problem Solving in Mathematics II

3 Credits

This course studies the foundations of elementary school mathematics with an emphasis on problem solving. MATH 201 Problem Solving in Mathematics II (3) (GQ) Problem Solving in Mathematics II studies the foundations of elementary school mathematics with an emphasis on problem solving. Mathematical ways of thinking are integrated throughout the study of probability, statistics, graphing, geometric shapes, and measurement. This course is designed for prospective teachers not only to gain the ability to explain the mathematics in elementary school courses, but also to help them comprehend the underlying mathematical concepts. Gaining a deeper understanding will enable them to assist their young students in the classroom since effective mathematical teaching requires understanding what students know, what they need to learn, and then helping them to learn it well.

General Education: Quantification (GQ)

MATH 210: Calculus with Engineering Technology Applications

3 Credits

Topics in calculus with an emphasis on applications in engineering technology. MATH 210 Calculus with Engineering Technology Applications (3) is a three-credit course to be taken either after the
Many of these students, MATH 220 is a required course in their degree requirements. Systems of linear equations appear everywhere in mathematics and its applications. MATH 220 will give students the basic tools necessary to analyze and understand such systems. The initial portion of the course teaches the fundamentals of solving linear systems. This requires the language and notation of matrices and fundamental techniques for working with matrices such as row and column operations, echelon form, and invertibility. The determinant of a matrix is also introduced; it gives a test for invertibility. In the second part of the course the key ideas of eigenvector and eigenvalue are developed. These allow one to analyze a complicated matrix problem into simpler components and appear in many disguises in physical problems. The course also introduces the concept of a vector space, a crucial element in future linear algebra courses. This course is completed by a wide variety of students across the university, including students majoring in engineering technology majors and places a large emphasis on technology and applications. The course provides mathematical tools required in the upper division engineering technology courses. A primary goal is to have students use technology to solve more realistic problems than the standard simplistic ones that can be solved by "pencil and paper." Student evaluation will be performed through exams, quizzes, graded assignments, and a cumulative final exam. It is expected that MTHBD 210 will be offered every semester with an enrollment of 44-80 students.

Enforced Prerequisites: MATH 83 OR MATH 140
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 211: Intermediate Calculus and Differential Equations with Applications

3 Credits

Topics in ordinary differential equations, linear algebra, complex numbers, Eigenvalue solutions and Laplace transform methods. MATH 211 Intermediate Calculus and Differential Equations with Applications (4) MATH 211 is a three-credit course to be taken after MATH 210. The content of the course is geared toward the needs of engineering technology majors and places a large emphasis on technology and applications. The course provides mathematical tools required in the engineering technology courses at the sixth semester and above. A primary goal is to have students use technology to solve more realistic problems than the standard simplistic ones that can be solved by "pencil and paper." Student evaluation will be performed through exams, quizzes, graded assignments, and a cumulative final exam.

Enforced Prerequisite: MATH 210
Bachelor of Arts: Quantification
General Education: Quantification (GQ)

MATH 220: Matrices

2-3 Credits

Systems of linear equations; matrix algebra; eigenvalues and eigenvectors; linear systems of differential equations. MATH 220 Matrices (2-3) (GQ) (BA) This course meets the Bachelor of Arts degree requirements. Systems of linear equations appear everywhere in mathematics and its applications. MATH 220 will give students the basic tools necessary to analyze and understand such systems. The initial portion of the course teaches the fundamentals of solving linear systems. This requires the language and notation of matrices and fundamental techniques for working with matrices such as row and column operations, echelon form, and invertibility. The determinant of a matrix is also introduced; it gives a test for invertibility. In the second part of the course the key ideas of eigenvector and eigenvalue are developed. These allow one to analyze a complicated matrix problem into simpler components and appear in many disguises in physical problems. The course also introduces the concept of a vector space, a crucial element in future linear algebra courses. This course is completed by a wide variety of students across the university, including students majoring in engineering programs, the sciences, and mathematics. (In case of many of these students, MATH 220 is a required course in their degree program.)
contrast to the non-honors version of this course, the honors version is typically more theoretical and will often include more sophisticated problems. Moreover, certain topics are often discussed in more depth and are sometimes expanded to include applications which are not visited in the non-honors version of the course.

Enforced Prerequisites: MATH 141 OR MATH 141B OR MATH 141E OR MATH 141G OR MATH 141H
Bachelor of Arts: Quantification
Honors

MATH 231: Calculus of Several Variables
2 Credits
Analytic geometry in space; partial differentiation and applications. Students who have passed MATH 230 or MATH 230H may not schedule this course.

Enforced Prerequisites: MATH 141 OR MATH 141B OR MATH 141E OR MATH 141G OR MATH 141H
Bachelor of Arts: Quantification

MATH 231H: Honors Calculus of Several Variables
2 Credits
Honors course in analytic geometry in space; partial differentiation and applications. Students who have passed MATH 230 or MATH 230H may not schedule this course.

Enforced Prerequisites: MATH 141 OR MATH 141B OR MATH 141E OR MATH 141G OR MATH 141H
Bachelor of Arts: Quantification

MATH 232: Integral Vector Calculus
2 Credits
Multidimensional analytic geometry, double and triple integrals; potential fields; flux; Green’s, divergence and Stokes’ theorems. Students who have passed MATH 230 may not schedule this course for credit.

Enforced Prerequisites: MATH 231 OR MATH 231H
Bachelor of Arts: Quantification

MATH 250: Ordinary Differential Equations
3 Credits
First- and second-order equations; special functions; Laplace transform solutions; higher order equations. Students who have passed MATH 251 may not schedule this course for credit.

Enforced Prerequisites: MATH 141 OR MATH 141B OR MATH 141E OR MATH 141G OR MATH 141H
Bachelor of Arts: Quantification

MATH 251: Ordinary and Partial Differential Equations
4 Credits
First- and second-order equations; special functions; Laplace transform solutions; higher order equations; Fourier series; partial differential equations.

Enforced Prerequisites: MATH 141 OR MATH 141B OR MATH 141E OR MATH 141G OR MATH 141H
Bachelor of Arts: Quantification

MATH 251H: Honors Ordinary and Partial Differential Equations
4 Credits
Honors course in first- and second-order equations; special functions; Laplace transform solutions; higher order equations; Fourier series; partial differential equations. MATH 251H Honors Ordinary and Partial Differential Equations (4) This course serves as an introduction to ordinary and partial differential equations. Topics include various techniques for solving first and second order ordinary differential equations, an introduction to numerical methods, solving systems of two ordinary differential equations, nonlinear differential equations and stability, Laplace transforms, Fourier series, and partial differential equations. The typical delivery format for the course is four 50-minute lectures per week, with typical assessment tools including examinations, quizzes, homework, and writing assignments. In contrast to the non-honors version of this course, the honors version is typically more theoretical and will often include more sophisticated problems. Moreover, certain topics are often discussed in more depth and are sometimes expanded to include applications which are not visited in the non-honors version of the course.

Enforced Prerequisites: MATH 141 OR MATH 141B OR MATH 141E OR MATH 141G OR MATH 141H
Bachelor of Arts: Quantification
Honors

MATH 252: Partial Differential Equations
1 Credits
Fourier series; partial differential equations. Students who have passed MATH 251 may not schedule this course for credit. This course serves as the continuation of MATH 250 (Ordinary Differential Equations) and provides an elementary treatment of partial differential equations and Fourier series. Once a student completes both MATH 250 (3 credits) and MATH 252 (1 credit), the student will have completed all of the material in MATH 251 (4 credits). In particular, the student will be able to find solutions to given partial differential equations and will be able to utilize the tools from the field of Fourier series in the process.
MATH 296: Independent Studies
1-18 Credits/Maximum of 18
Creative projects, including nonthesis research, which are supervised on an individual basis and which fall outside the scope of formal courses.

Bachelor of Arts: Quantification
MATH 297: Special Topics
1-9 Credits/Maximum of 9
Formal courses given infrequently to explore, in depth, a comparatively narrow subject which may be topical or of special interest.

Bachelor of Arts: Quantification
MATH 310: Elementary Combinatorics
3 Credits
Fundamental techniques of enumeration and construction of combinatorial structures, permutations, recurrences, inclusion-exclusion, permanents, 0, 1-matrices, Latin squares, combinatorial designs.

Enforced Prerequisites: MATH 220 OR MATH 220H
Bachelor of Arts: Quantification
MATH 310A: Concepts in Combinatorics - Recitation
1 Credits
Recitation for MATH 310H - Concepts in Combinatorics.

Enforced Prerequisite: MATH 220 or Concurrent: MATH 310H
Bachelor of Arts: Quantification
MATH 310H: Honors Concepts of Combinatorics
3 Credits
Honors version of elementary and enumerative combinatorics.

Prerequisite: MATH 220
Bachelor of Arts: Quantification
Honors
MATH 311M: Honors Concepts of Discrete Mathematics
3 Credits
Basic methods of mathematical thinking and fundamental structures, primarily in the context of numbers, groups, and symmetries.

Bachelor of Arts: Quantification
Honors
Writing Across the Curriculum
MATH 312: Concepts of Real Analysis
3 Credits
An introduction to rigorous analytic proofs involving properties of real numbers, continuity, differentiation, integration, and infinite sequences and series.

Enforced Prerequisites: MATH 141 OR MATH 141B OR MATH 141E OR MATH 141G OR MATH 141H
Bachelor of Arts: Quantification
MATH 312A: Honors Concepts of Real Analysis - Recitation
1 Credits
A recitation component to MATH 312H, practice in problem solving.

Enforced Prerequisite: MATH 140H and MATH 311M or Concurrent: MATH 312H
Bachelor of Arts: Quantification
MATH 312H: Honors Concepts of Real Analysis
3 Credits
Basic methods of mathematical thinking and fundamental structures, primarily in the context of infinite sets, real numbers, and metric spaces.

Enforced Prerequisites: MATH 141 OR MATH 141B OR MATH 141E OR MATH 141G OR MATH 141H
Bachelor of Arts: Quantification
Honors
MATH 313A: Concepts of Geometry - Recitation
1 Credits
A recitation component to Math 313H, practice in problem solving.

Enforced Prerequisite: MATH 140H and MATH 311M or Concurrent: MATH 313H
MATH 313H: Concepts of Geometry
3 Credits
Development thorough understanding and technical mastery of foundations of modern geometry. MATH 313H Concepts of Geometry

(3) The central aim of this course is to develop thorough understanding and technical mastery of foundations of modern geometry. Basic high school geometry is assumed; axioms are mentioned, but not used to deduce theorems. Approach in development of the Euclidean geometry of the plane and the 3-dimensional space is mostly synthetic with an emphasis on groups of transformations. Linear algebra is invoked to clarify and generalize the results in dimension 2 and 3 to any dimension. It culminates in the last part of the course where six 2-dimensional geometries and their symmetry groups are discussed. This course is a part of a new "pre-MASS" program (PMASS) aimed at freshman/sophomore level students, which will operate in steady state in the spring semesters. This course is directly linked with a proposed course Math 313R, its 1-credit recitation component. It is highly recommended to all mathematics, physics and natural sciences majors who are graduate school bound, and is a great opportunity for
all Schreyer Scholars. The following topics will be covered: Euclidean geometry of the plane (distance, isometries, scalar product of vectors, examples of isometries: rotations, reflections, translations, orientation, symmetries of planar figures, review of basic notions of group theory, cyclic and dihedral groups, classification of isometries of Euclidean plane, discrete groups of isometries and crystallographic restrictions, similarity transformations, selected results from classical Euclidean geometry); Euclidean geometry of the 3-dimensional space and the sphere (distance, isometries, scalar product of vectors, planes and lines in the 3-dimensional space, normal vectors to planes, classification of pairs of lines, isometries with a fixed point: rotations and reflections, orientation, isometries of the sphere, classification of orientation-reversing isometries with a fixed point, finite groups of isometries of the 3-dimensional space, existence of a fixed point, examples: cyclic, dihedral, and groups of symmetries of Platonic solids, classification of isometries without fixed point: translations and screw-motions, intrinsic geometry of the sphere, elliptic plane: a first example of non-Euclidean geometry); Elements of linear algebra and its application to geometry in 2, 3, and n dimension (real and complex vector spaces, linear independence of vectors, basis and dimension, eigenvalues and eigenvectors, diagonalizable matrices, classification of matrices in dimension 2: elliptic, hyperbolic and parabolic matrices, orthogonal matrices and isometries of the n-dimensional space); Six 2-dimensional geometries (Projective geometry, affine geometry, inversions and conformal geometry, Euclidean geometry revisited, geometry of elliptic plane, hyperbolic geometry). The achievement of educational objectives will be assessed through weekly homework, class participation, and midterm and final exams.

Enforced Prerequisite: MATH 140H and MATH 311M or Concurrent: MATH 312H

Honors

MATH 314: PMASS Problem Solving Seminar

1 Credits

Group work on challenging problems, discussions and project presentations. MATH 314 PMASS Problem Solving Seminar (1) A 1-credit Problem Solving Seminar will feature group work on challenging problems which require only elementary techniques for their solution. Each student of the PMASS program will be required to participate in two individual or group projects. Unlike those in MASS Program, the projects will not be necessarily closely related to the courses, although the course instructors will be encouraged to offer topics and supervise the work. Some projects will grow out of the work of the problem solving seminar, and the seminar will be a venue for the students to discuss their research projects. This course is a part of a new "pre-MASS" program (PMASS) aimed at freshman/sophomore level students, which will operate in steady state in the spring semesters. This course is linked with other PMASS courses, and is highly recommended to all mathematics, physics and natural sciences majors who are graduate school bound, and is a great opportunity for all Schreyer Scholars. Each student of the PMASS program will be required to participate in two individual or group projects. The achievement of educational objectives will be assessed through evaluations of the project presentations.

Honors

MATH 315: Foundations of Mathematics

3 Credits

A consideration of selected topics in the foundations of mathematics, with emphasis on development of basic meaning and concepts.

Enforced Prerequisite: MATH 141

Bachelor of Arts: Quantification

MATH 315H: PMASS Colloquium

1 Credits

Bi-weekly lecture series with multiple invite speakers. MATH 315 PMASS Colloquium (1) This bi-weekly lecture series will feature multiple invited speakers. Unlike MASS colloquia that focus on specific topics, those lectures will be broad in scope and not very technical. We envision that advanced high school students from State College Area High School will attend these lectures that will be properly advertised. This will help to attract talented high school students to undergraduate study of mathematics and related subjects, and will also enhance our existing collaboration with mathematics educators in the area. This course is a part of a new "pre-MASS" program (PMASS) aimed at freshman/sophomore level students, which will operate in steady state in the spring semesters. This course is highly recommended to all mathematics, physics and natural sciences majors who are graduate school bound, and is a great opportunity for all Schreyer Scholars.

Enforced Prerequisite: MATH 140H and MATH 311M or Concurrent: MATH 312H and MATH 313H and MATH 314H

Honors

MATH 318: Elementary Probability

3 Credits

Combinatorial analysis, axioms of probability, conditional probability and independence, discrete and continuous random variables, expectation, limit theorems, additional topics. Students who have passed either MATH(STAT) 414 or 418 may not schedule this course for credit.

Enforced Prerequisite: MATH 141

Cross-listed with: STAT 318

Bachelor of Arts: Quantification

MATH 319: Applied Statistics in Science

3 Credits

Statistical inference: principles and methods, estimation and testing hypotheses, regression and correlation analysis, analysis of variance, computer analysis. Students who have passed MATH 415 / STAT 415 may not schedule this course for credit.

Enforced Prerequisites: MATH 318 or STAT 318 or MATH 414 or STAT 414

Cross-listed with: STAT 319

Bachelor of Arts: Quantification

MATH 399: Foreign Studies

1-12 Credits/Maximum of 12

Courses offered in foreign countries by individual or group instruction.

Bachelor of Arts: Quantification
Mathematics (MATH)

International Cultures (IL)

MATH 401: Introduction to Analysis I

3 Credits

Review of calculus, properties of real numbers, infinite series, uniform convergence, power series. Students who have passed Math. 403 may not schedule this course.

Enforced Prerequisite: MATH 230 or MATH 231
Bachelor of Arts: Quantification

MATH 403: Classical Analysis I

3 Credits

Topology of R^n, compactness, continuity of functions, uniform convergence, Arzela-Ascoli theorem in the plane, Stone-Wierstrass theorem.

Enforced Prerequisite: MATH 312
Bachelor of Arts: Quantification

MATH 403H: Honors Classical Analysis I

3 Credits

Development of a thorough understanding and technical mastery of foundations of classical analysis in the framework of metric spaces. MATH 403H Honors Classical Analysis I (3) The central aim of this course is to develop thorough understanding and technical mastery of foundations of classical analysis in the framework of metric spaces rather than multidimensional Euclidean spaces. This level of abstraction is essential since it is in the background of functional analysis, a fundamental tool for modern mathematics and physics. Another motivation for studying analysis in this wider context is that many general results about functions of one or several real variables are more easily grasped at this more abstract level, and, besides, the same methods and techniques are applicable to a wider class of problems, e.g. to the study of function spaces. This approach also brings to high relief some of the fundamental connections between analysis on one hand and (higher) algebra and geometry on the other. This course is a sequel to Math 312H; it is highly recommended to all mathematics, physics and natural sciences majors who are graduate school bound, and is a great opportunity for all Schreyer Scholars. The following topics will be covered: Metric spaces (topology, convergence, Cauchy sequences and completeness); Maps between metric spaces (continuous maps and homeomorphisms, stronger continuity properties: uniform continuity, Hölder and Lipschitz continuity, contraction mapping principle, points of discontinuity and the Baire Category Theorem); Compact metric spaces (continuity and compactness, connectedness, total boundedness, coverings and Lebesgue number, perfect metric spaces, characterization of Cantor sets, fractals); Function spaces (spaces of continuous maps, uniform continuity and equicontinuity, Arzela-Ascoli Theorem, uniform approximation by polynomials. Stone-Weierstrass Theorem).

Enforced Prerequisite: MATH 311M and MATH 312H
Bachelor of Arts: Quantification Honors

MATH 404: Classical Analysis II

3 Credits

Differentiation of functions from R^n to R^m, implicit function theorem, Riemann integration, Fubini’s theorem, Fourier analysis.

Enforced Prerequisite: MATH 403
Bachelor of Arts: Quantification

MATH 405: Advanced Calculus for Engineers and Scientists I

3 Credits

Vector calculus, linear algebra, ordinary and partial differential equations. Students who have passed MATH 411 or 412 may not take this course for credit.

Enforced Prerequisites: (MATH 230 OR MATH 231) AND (MATH 250 OR MATH 251)
Bachelor of Arts: Quantification

MATH 406: Advanced Calculus for Engineers and Scientists II

3 Credits

Complex analytic functions, sequences and series, residues, Fourier and Laplace transforms. Students who have passed MATH 421 may not take this course for credit.

Enforced Prerequisite: MATH 405
Bachelor of Arts: Quantification

MATH 410: Complex Analysis for Mathematics and Engineering

3 Credits

Complex analytic functions; Cauchy-Riemann equations; complex contour integrals; Cauchy’s integral formula; Taylor and Laurent series; residue theory; applications in engineering. MATH 410 Complex Analysis for Mathematics and Engineering (3) A succinct stand-alone course description (up to 400 words) to be made available to students through the on-line Bulletin and Schedule of Courses. This is a complex analysis course designed for students in mathematics, applied mathematics, engineering, science, and related fields. Topics include complex numbers; analytic functions, complex differentiability, and the Cauchy-Riemann equations; complex exponential, logarithmic, power, and trigonometric functions; complex contour integrals; Cauchy’s integral formula; Taylor and Laurent series; residue theory; and various applications in areas of science and engineering. This course focuses on the definitions, concepts, calculation techniques, supporting theory, and examples of applications suited to the usage of complex analysis in mathematics, applied mathematics, science, and engineering. Students who have passed MATH 406 or MATH 421 may not take this course for credit.

Enforced Prerequisite: MATH 230 or MATH 232

MATH 411: Ordinary Differential Equations

3 Credits

Linear ordinary differential equations; existence and uniqueness questions; series solutions; special functions; eigenvalue problems; Laplace transforms; additional topics and applications.
Enforced Prerequisites: (MATH 230 OR MATH 231) AND (MATH 250 OR MATH 251)
Bachelor of Arts: Quantification

MATH 412: Fourier Series and Partial Differential Equations
3 Credits
Orthogonal systems and Fourier series; derivation and classification of partial differential equations; eigenvalue function method and its applications; additional topics, MATH 412 Fourier Series and Partial Differential Equations (3) (BA) This course meets the Bachelor of Arts degree requirements. The purpose of MATH 412 is to introduce students to the origins, theory, and applications of partial differential equations. Several basic physical phenomena are considered - including flows, vibrations, and diffusions - and used to derive the relevant equations. The fundamentals of the mathematical theory of partial differential equations are motivated and developed for the students through the systematic exploration of these classic physical systems and their corresponding equations: the Laplace, wave, and heat equations. In addition to treating the physical origins of the equations, this course focuses on solving evolution equations as initial value problems on unbounded domains (the Cauchy problem), and also on solving partial differential equations on bounded domains (boundary value problems). There is not one but many techniques for solving these equations, and the course presents some aspect of the expansion in orthogonal functions (including Fourier series), eigenvalue theory, functional analysis, and the use of separation of variables, Fourier transforms, and Laplace transforms to solve PDEs by converting them to ordinary differential equations. This course currently serves a cross-section of students at the university with interests or the need for this advanced subject mathematics, including students majoring in the engineering program, meteorology, physics, and mathematics. This typically includes the most advanced physics, engineering, and meteorology students, as well as mathematics majors with interests in applied mathematics.

Enforced Prerequisites: MATH 230 AND (MATH 250 OR MATH 251)
Bachelor of Arts: Quantification

MATH 414: Introduction to Probability Theory
3 Credits
STAT 414 / MATH 414 is an introduction to the theory of probability for students in statistics, mathematics, engineering, computer science, and related fields. The course presents students with calculus-based probability concepts and those concepts can be used to describe the uncertainties present in real applications. Topics include probability spaces, discrete and continuous random variables, transformations, expectations, generating functions, conditional distributions, law of large numbers, central limit theorems. Most students are recommended to sequentially take MATH 230 or MATH 231 prior to STAT414 / MATH 414, although the alignment of the topics in each class permit concurrent enrollment. Students may take only one course from STAT 414 / MATH 414 and STAT 418 / MATH 418.

Enforced Prerequisite: MATH 230 or Concurrent: MATH 232 or (MATH 231 and RM 214)
Cross-listed with: STAT 414

MATH 415: Introduction to Mathematical Statistics
3 Credits
A theoretical treatment of statistical inference, including sufficiency, estimation, testing, regression, analysis of variance, and chi-square tests.

Enforced Prerequisites: MATH 414 or STAT 414
Cross-listed with: STAT 415

MATH 416: Stochastic Modeling
3 Credits
Review of distribution models, probability generating functions, transforms, convolutions, Markov chains, equilibrium distributions, Poisson process, birth and death processes, estimation.

Enforced Prerequisites: (STAT 318 or MATH 318 or STAT 414 or MATH 414) and MATH 230
Cross-listed with: STAT 416

MATH 417: Qualitative Theory of Differential Equations
3 Credits
Linear differential equations, stability of stationary solutions, ordinary bifurcation, exchange of stability, Hopf bifurcation, stability of periodic solutions, applications. MATH 417 Qualitative Theory of Differential Equations (3) (BA) This course meets the Bachelor of Arts degree requirements. The main objective of the course is the qualitative theory of ordinary differential equations such as existence and uniqueness of solutions, dependence on initial data and parameters, and basic stability of solutions for both linear and nonlinear equations. It is designed to introduce students to modern concepts including the bifurcation theory, intermittent (transitional) and chaotic behavior of solutions and dynamical system approach to differential equations. Along the way, a number of applications are discussed and students get familiar with some basic examples illustrating main principles of the theory, such as Lorenz attractor, predator-prey models, etc. The course is completed by students majoring in engineering programs, the sciences, and mathematics.

Enforced Prerequisite: MATH 220 and (MATH 250 or MATH 251)
Bachelor of Arts: Quantification

MATH 418: Introduction to Probability and Stochastic Processes for Engineering
3 Credits
Introduction to probability axioms, combinatorics, random variables, limit laws, and stochastic processes. Students may take only one course from MATH414 / STAT 414 and MATH 418 / STAT 418 for credit. STAT 418 / MATH 418 Introduction to Probability and Stochastic Processing for Engineering (3) This course gives an introduction to probability and random processes. The topics are not covered as deeply as in a semester-long course in probability only or in a semester-long course in stochastic processes only. It is intended as a service course primarily for engineering students, though no engineering background is required or assumed. The topics covered include probability axioms, conditional probability, and combinatorics; discrete random variables; random variables with continuous distributions; jointly distributed random variables and random vectors; sums of random variables and moment
generating functions; and stochastic processes, including Poisson, Brownian motion, and Gaussian processes.

Enforced Prerequisite: MATH 230 or MATH 231
Cross-listed with: STAT 418

MATH 418H: Probability
3 Credits

Fundamentals and axioms, combinatorial probability, conditional probability and independence, probability laws, random variables, expectation; Chebyshev’s inequality. Students may take only one course from MATH(STAT) 414 and 418 for credit.

Cross-Listed
Honors

MATH 419: Theoretical Mechanics
3 Credits

Principles of Newtonian, Lagrangian, and Hamiltonian mechanics of particles with applications to vibrations, rotations, orbital motion, and collisions. PHYS 419 / MATH 419 Theoretical Mechanics (3) A second course in classical mechanics, required of all physics majors who typically take it in their 5th or 6th semester. The course includes a review of relevant mathematics, detailed discussions of advanced topics in Newtonian mechanics, introductions to Lagrangian and Hamiltonian dynamics, and applications to such forced oscillations, orbital motion, vibrational motion and normal modes, rigid body motion, and collisions. It is a prerequisite for Physics 461, which is a second semester extension. It is also a valuable background for most 400-level physics courses, especially Physics 410.

Enforced Prerequisites: (MATH 230 OR MATH 231) AND (MATH 250 OR MATH 251) AND PHYS 212 AND PHYS 213 AND PHYS 214
Cross-listed with: PHYS 419

MATH 421: Complex Analysis
3 Credits

Infinite sequences and series; algebra and geometry of complex numbers; analytic functions; integration; power series; residue calculus; conformal mapping, applications.

Enforced Prerequisites: (MATH 230 OR MATH 232 OR MATH 405) AND (MATH 401 OR MATH 403)
Bachelor of Arts: Quantification

MATH 422: Wavelets and Fourier Analysis: Theory and Applications
3 Credits

Fundamental mathematical issues of the theory of wavelets for senior undergraduate and graduate students in mathematics, engineering, physics, and computer science.

Bachelor of Arts: Quantification

MATH 425: Introduction to Operations Research
3 Credits

Nature of operations research, problem formulation, model construction, deriving solution from models, allocation problems, general linear allocation problem, inventory problems.

Enforced Prerequisite: MATH 141 and MATH 220
Bachelor of Arts: Quantification

MATH 426: Introduction to Modern Geometry
3 Credits

Plane and space curves; space surfaces; curvature; intrinsic geometry of surfaces; Gauss-Bonnet theorem; covariant differentiation; tensor analysis.

Enforced Prerequisite: MATH 401 or MATH 403
Bachelor of Arts: Quantification

MATH 427: Foundations of Geometry
3 Credits

Euclidean and various non-Euclidean geometries and their development from postulate systems. Students who have passed MATH 427 may not schedule MATH 471.

Enforced Prerequisite: MATH 230 or MATH 231
Bachelor of Arts: Quantification

MATH 428: Geometry for Teachers
1 Credits

Research in mathematics education using ideas from Euclidean and non-Euclidean geometry. Students who have passed MATH 471 may not schedule MATH 427. MATH 428 Geometry for Teachers (1) MATH 428 is designed to introduce students to mathematics education and research in education. The student will present topics in written and verbal classroom reports. Students will be evaluated on research papers and classroom presentations of those papers, classroom technology demonstration of geometry topics, and classroom demonstration of teaching geometry. This course supplements MATH 427 by providing the education component that is required by the state of Pennsylvania for obtaining certification in teaching mathematics. This course is offered only at Penn State Erie, The Behrend College.

Enforced Prerequisite: MATH 311W . Prerequisite or concurrent: MATH 427
Bachelor of Arts: Quantification

MATH 429: Introduction to Topology
3 Credits

Enforced Prerequisite: MATH 311W
Bachelor of Arts: Quantification
MATH 430: Linear Algebra and Discrete Models I

3 Credits

Vector spaces, linear transformations, matrices determinants, characteristic values and vectors, systems of linear equations, applications to discrete models.

Enforced Prerequisite: MATH 220
Bachelor of Arts: Quantification

MATH 431: Linear Algebra and Discrete Models II

3 Credits

Vector spaces and linear transformations, matrices, determinants, characteristic values and vectors, systems of linear equations, applications to discrete models.

Enforced Prerequisite: MATH 430
Bachelor of Arts: Quantification

MATH 435: Basic Abstract Algebra

3 Credits

Elementary theory of groups, rings, and fields. Students who have passed MATH 435 may not schedule MATH 470.

Enforced Prerequisite: MATH 311W or MATH 315
Bachelor of Arts: Quantification

MATH 436: Linear Algebra

3 Credits

Vector spaces and linear transformations, canonical forms of matrices, elementary divisors, invariant factors; applications. Students who have passed MATH 436 may not schedule MATH 441.

Enforced Prerequisite: MATH 311W
Bachelor of Arts: Quantification

MATH 436H: Linear Algebra

3 Credits

Vector spaces and linear transformations, canonical forms of matrices, elementary divisors, invariant factors; applications.

Honors

MATH 437: Algebraic Geometry

3 Credits

Study of curves in the plane defined by polynomial equations $p(x,y)=0$. Projective equivalence, singular points, classification of cubics.

MATH 437 Algebraic Geometry (3)(BA) This course meets the Bachelor of Arts degree requirements. The geometric study of algebraic equations is one of the oldest and deepest parts of mathematics, and it lies at the heart of modern developments in geometry, algebra, number theory and physics. Students completing MATH 437 will understand many new algebraic and geometric ideas by studying examples of curves defined by equations of degrees 2 and 3 in the plane. First come conics (given by equations of degree 2 in two variables). Rigid motions, similarities, and affine transformations give different classifications of them. New ideas then show how to get a conic through any five points and prove Pascal's theorem about six points on a conic. Special cases suggest extension of the usual plane to the projective plane, with "points at infinity," homogeneous coordinates, and projective transformations. The main part of the course turns to equations of degree 3 and their singularities, flex points, tangents, and degeneracies. Several new ideas, both algebraic and analytic, are brought in to prove the existence of complex flex points on singular cubics and then real flex points on nonsingular real cubics. There is then a classification on complex projective cubics by a single parameter and finally a full classification of all real projective cubics. As time permits, relations to further topics are sketched: addition of points on a nonsingular cubic, Mordell's theorem, doubly periodic functions, and Fermat's last theorem. The course is typically taken by mathematics majors.

Enforced Prerequisites: (MATH 230 OR MATH 231) AND MATH 311W
Bachelor of Arts: Quantification

MATH 441: Matrix Algebra

3 Credits

Determinants, matrices, linear equations, characteristic roots, quadratic forms, vector spaces. Students who have passed Math 436 may not schedule this course.

Enforced Prerequisite: MATH 220
Bachelor of Arts: Quantification

MATH 448: Mathematics of Finance

3 Credits

The course provides a foundational knowledge of the mathematics and mathematical models of finance, primarily of option pricing, hedging, and portfolio optimization. The topics include the definition of various financial securities and instruments (e.g. bonds, stocks, forward contracts, and options), the theory of interest, the No-Arbitrage Principle, measures of return and volatility, the Markowitz model of portfolio theory, the Capital Asset Pricing Model, the pricing of forward contracts, option trading strategies, the pricing of options via binomial models and the Black-Scholes model, and principles of hedging.

Enforced Prerequisites: MATH 141 AND (STAT 200 OR STAT 301 OR MATH 318 OR STAT 318 OR STAT 401 OR MATH 414 OR STAT 414)

MATH 449: Applied Ordinary Differential Equations

3 Credits

Differential and difference equations and their application to biology, chemistry, and physics; techniques in dynamical systems theory. MATH 449 Mathematical Modeling (3) Many phenomena that arise in the natural sciences, such as the motion of pendulum or signal conduction in neurons or oscillations in certain chemical reactions, can be modeled using nonlinear differential equations. This course will develop the mathematical techniques needed to investigate such differential equations. These techniques include the study of equilibria, stability, phase plane analysis, bifurcation analysis and chaos. The course will assume prior knowledge of ordinary differential equations at the MATH 250/251 level; this is the only prerequisite for the course. We will focus on understanding and interpreting the behavior of the solutions to the differential equation models rather than on deriving the model equations themselves. Evaluation will be based on midterm exams, a final exam, graded homework, and graded longer projects which may involve computer work. The course should be of interest to any science or
MAY TAKE ONLY ONE COURSE FOR CREDIT FROM MATH 451 AND 455.

COMPUTATIONAL PROPERTIES AND IMPLEMENTATION. STUDENTS TRANSFORM, AND DIFFERENTIAL EQUATIONS EMPHASIZING NONLINEAR EQUATIONS, LINEAR SYSTEMS, FAST FOURIER

3 Credits

MATH 451: Numerical Computations

Bachelor of Arts: Quantification

MATH 450: Mathematical Modeling

3 Credits

Constructing mathematical models of physical phenomena; topics include pendulum motion, polymer fluids, chemical reactions, waves, flight, and chaos. MATH 450 Mathematical Modeling (3) The purpose of the course is to introduce mathematical modeling, i.e., the construction of mathematical structures which capture relevant physical phenomena. The course will systematically explore mathematical ideas and tools used to study the natural world. Particular emphasis will be placed on the process of creating a mathematical model starting from a physical scenario. Typically this process will begin with an experiment either demonstrated in the W. G. Pritchard Lab or performed by the students in class. Once a particular model has been developed, students will use mathematical analysis and experimentation to determine the properties and relevance of the model, and to make predictions. Often the model can be satisfactory; however, many times one also finds new features of the system that are not adequately accounted for in the model, and the process begins again. It is this cycle the course will focus on. For a given phenomenon (e.g., flow of viscous fluid, pendulum motion) several models may be compared and contrasted, and possible simplifications will be discussed. A significant aspect of the course is its laboratory component, in which the students will perform experiments or observe demonstrations. However, the main emphasis will be placed on creating and rigorously analyzing the mathematical aspects of the models. Instead of presenting a finely tuned model for a given phenomenon, this course will try to convey some of the heuristic, intuitive, and mathematical ideas employed in modeling. Examples of physical systems to be considered include: simple and compound pendulum motion, chemical oscillations, water waves, and elastic behavior of polymer solutions. The course is open to a wide range of undergraduate as well as graduate students with majors in mathematics, biology, chemistry, engineering, and physics. The course should be accessible to students with some basic knowledge of mathematical analysis and differential equations. Main topics include: modeling with ordinary differential equations; bifurcation theory and stability; traveling waves in epidemics, chemical reactions, free fluid surfaces, and polymer solutions; fluctuations in nature, stochastic differential equations and chaos.

Enforced Prerequisite: MATH 315 and (MATH 430 or MATH 405 or MATH 412)

Bachelor of Arts: Quantification

MATH 451: Numerical Computations

3 Credits

ALGORITHMS FOR INTERPOLATION, APPROXIMATION, INTEGRATION, NONLINEAR EQUATIONS, LINEAR SYSTEMS, FAST FOURIER TRANSFORM, AND DIFFERENTIAL EQUATIONS EMphasizing computational properties and implementation. STUDENTS MAY TAKE ONLY ONE COURSE FOR CREDIT FROM MATH 451 AND 455.

Enforced Prerequisite: 3 credits of programming; MATH 230 or MATH 231

Cross-listed with: CMPSC 451

Bachelor of Arts: Quantification

MATH 455: Introduction to Numerical Analysis I

3 Credits

Floating point computation, numerical rootfinding, interpolation, numerical quadrature, direct methods for linear systems. Students may take only one course for credit from MATH 451 and MATH 455.

Enforced Prerequisite: (CMPSC 201 or CMPSC 202 or CMPSC 121 or CMPSC 131) and MATH 220 and (MATH 230 or MATH 231)

Cross-listed with: CMPSC 455

Bachelor of Arts: Quantification

MATH 455H: Introduction To Numerical Analysis I

3 Credits

FLOATING POINT COMPUTATION, NUMERICAL ROOTFINDING, INTERPOLATION, NUMERICAL QUADRATURE, DIRECT METHODS FOR LINEAR SYSTEMS. STUDENTS MAY TAKE ONLY ONE COURSE FOR CREDIT FROM MATH 451 AND MATH 455.

Cross-Listed Honors

MATH 456: Introduction to Numerical Analysis II

3 Credits

Polynomial and piecewise polynomial approximation, matrix least squares problems, numerical solution of eigenvalue problems, numerical solution of ordinary differential equations.

Enforced Prerequisite: MATH 455

Cross-listed with: CMPSC 456

Bachelor of Arts: Quantification

MATH 457: Introduction to Mathematical Logic

3 Credits

Propositional logic, first-order predicate logic, axioms and rules of inference, structures, models, definability, completeness, compactness. Logic forms the foundation of all mathematical reasoning. To prove a mathematical theorem, one deduces them step by step from basic principles, called axioms, or from other statements previously deduced. Each step of a proof has to be a logically valid rule, such as, for example, the modus ponens: “If A holds, and A implies B, then B holds.” In Math 457, students will learn how concepts such as axiom, theorem, proof, and truth can be formulated as a mathematical theory, that is, logical reasoning will be studied as a mathematical subject. The simplest kind of logical system is propositional logic. Here, the basic components are whole statements which are either true or false, and which can be combined using logical connectives such AND, OR, or NOT to form new statements. Its simple nature makes propositional logic a good system to introduce many of the basic ideas: syntax and semantics, proof systems, completeness and compactness. However, propositional logic does not capture mathematical reasoning adequately. Therefore, one considers (first-order) predicate logic. Students will learn how formulas are formed according to syntactical rules. They will also study how a mathematical theory is defined as a set of formulas, how a proof is formally defined, and what constitutes a proof system. The syntactical notions above are
contrasted with mathematical semantics, which considers structures over which formulas can be interpreted. This way, one can rigorously define whether a formal statement is true in a given mathematical structure, in which case we say the structure is a model of the statement. For example, the integers with addition are a model of the statement “for every x there exists a y such that x+y =0”. A central goal of mathematical logic is to explore how the syntactical side (formulas, axioms, proof systems) and the semantical side (mathematical structures such as the additive group of integers) interact. Two fundamental results in this regard will be covered: the completeness theorem says that one can prove a statement from a set of axioms if and only if the statement is true in any structure satisfying all axioms. The compactness theorem, in turn, is an important consequence of the completeness theorem. It has profound implications for the existence and construction of mathematical structures. Students who would like to enroll in Math 457 are required to have some knowledge of mathematical proofs as provided in Math 311W.

Bachelor of Arts: Quantification

MATH 461: Theoretical Mechanics

3 Credits

Continuation of Math.(Phys.) 419. Theoretical treatment of dynamics of a rigid body, theory of elasticity, aggregates of particles, wave motion, mechanics of fluids.

Enforced Prerequisite: MATH 419
Cross-listed with: PHYS 461

MATH 465: Number Theory

3 Credits

Elements, divisibility of numbers, congruences, residues, and forms. MATH 465 Number Theory (3) (BA) This course meets the Bachelor of Arts degree requirements. This course serves as an upper-level introduction to the fundamentals of elementary number theory. A major emphasis in the course is placed on the role that the prime numbers play in the study of properties of the integers along with the related topics of divisibility and factorization of integers. Additional topics covered in the course include congruences (and the theorems of Euler and Fermat which are classics in this area), properties of arithmetic functions including those which are multiplicative, and other topics such as Pythagorean triples and representations of numbers as sums of squares. This course is completed by a wide variety of students across the university, especially those majoring in mathematics. (In many of the options in the MTHBS degree, MATH 465 can be used to satisfy one of the major requirements.) The course is also taken quite frequently by non-mathematics majors who wish to use the course to satisfy an upper-level requirement for the mathematics minor.

Enforced Prerequisite: MATH 311W
Bachelor of Arts: Quantification

MATH 467: Factorization and Primality Testing

3 Credits

Prime sieves, factoring, computer numeration systems, congruences, multiplicative functions, primitive roots, cryptography, quadratic residues. Students who have passed MATH 465 may not schedule this course.

Enforced Prerequisite: MATH 311W

Cross-listed with: CMPSC 467
Bachelor of Arts: Quantification

MATH 467H: Factorization and Primality Testing

3 Credits

Prime sieves, factoring, computer numeration systems, congruences, multiplicative functions, primitive roots, cryptography, quadratic residues. Students who have passed MATH 465 may not schedule this course.

Honors

MATH 468: Mathematical Coding Theory

3 Credits

Shannon’s theorem, block codes, linear codes, Hamming codes, Hadamard codes, Golay codes, Reed-Muller codes, bounds on codes, cyclic codes.

Enforced Prerequisite: MATH 311W
Bachelor of Arts: Quantification

MATH 470: Algebra for Teachers

3 Credits

An introduction to algebraic structures and to the axiomatic approach, including the elements of linear algebra. Designed for teachers and prospective teachers. Students who have passed Math 435 may not schedule this course.

Enforced Prerequisite: MATH 311W
Bachelor of Arts: Quantification

MATH 471: Geometry for Teachers

4 Credits

Problem solving oriented introduction to Euclidean and non-Euclidean geometries; construction problems and geometrical transformations via “Geometer’s Sketchpad” software. Intended primarily for those seeking teacher certification in secondary mathematics. Students who have passed MATH 427 may not schedule this course.

Enforced Prerequisite: MATH 311W
Bachelor of Arts: Quantification

MATH 475: History of Mathematics

3 Credits

A global survey of the history of mathematics as viewed as a human response to cultural, political, economic, and societal pressures. MATH 475W Introduction to the History of Mathematics (3) (DF) The primary goal of this course is to explore where mathematics comes from, how it was labored on, how ideas were perceived, and how theories developed. Development in algebra, geometry, arithmetic and calculus will be discussed. A second goal is to help students understand the importance of written communication in mathematics and to provide opportunities for students to improve the quality of their writing. The primary means for accomplishing this goal will be four papers, 4-8 pages in length. These will be written for an audience of mathematically-knowledgeable readers. In addition, each quiz will contain at least one essay question. Students will be evaluated on quizzes, homework, papers, and a final exam. Quizzes will total 250 points, the papers 200 points, and the final exam
MATH 479: Special and General Relativity
3 Credits

Mathematical description, physical concepts, and experimental tests of special and general relativity. MATH 479 / PHYS 479 Special and General Relativity (3) This course is intended as an elective course (within the undergraduate Physics program) for Physics majors to be taken in their senior year. Intended to be cross-listed with MATH, it can also be used in support of a Mathematics minor and, in some options, within the Math program as a program elective as well. The course significantly expands upon the introduction to Special Relativity (SR) seen in PHYS 237, including discussions of experimental tests of SR and applications to relativistic mechanics. It then introduces students to the mathematical machinery required to understand General Relativity (GR), starting with the description of curved spacetimes and geodesics. It discusses solutions to the Einstein equations and surveys the classic tests which established the validity of General Relativity. It concludes with applications of GR in such areas as black hole physics, the generation and detection of gravitational waves, other topics (such as cosmology, relativistic astrophysics, etc.).

Enforced Prerequisites: PHYS 237 AND PHYS 400 AND PHYS 419 AND (MATH 250 OR MATH 251) AND (MATH 230 OR MATH 231)
Cross-listed with: PHYS 479
Bachelor of Arts: Quantification

MATH 482: Mathematical Methods of Operations Research
3 Credits

Survey of linear and nonlinear programming; mathematics of optimization; queues; simulation.

Enforced Prerequisite: MATH 220 and MATH 230 and STAT 301
Bachelor of Arts: Quantification

MATH 484: Linear Programs and Related Problems
3 Credits

Introduction to theory and applications of linear programming; the simplex algorithm and newer methods of solution; duality theory.

Enforced Prerequisites: MATH 220 AND (MATH 230 OR MATH 231)
Bachelor of Arts: Quantification

MATH 485: Graph Theory
3 Credits

Introduction to the theory and applications of graphs and directed graphs. Emphasis on the fundamental theorems and their proofs.
MATH 496: Independent Studies
1-18 Credits/Maximum of 18
Creative projects, including research and design, which are supervised on an individual basis and which fall outside the scope of formal courses.

Bachelor of Arts: Quantification

MATH 496A: **SPECIAL TOPICS**
1-6 Credits
Bachelor of Arts: Quantification

MATH 496H: Independent Studies
1-18 Credits/Maximum of 18
Creative projects, including research and design, which are supervised on an individual basis and which fall outside the scope of formal courses.

Honors

MATH 497: Special Topics
1-9 Credits/Maximum of 999
Formal courses given infrequently to explore, in depth, a comparatively narrow subject which may be topical or of special interest.

Bachelor of Arts: Quantification

MATH 498: Special Topics
1-9 Credits/Maximum of 9
Formal courses given infrequently to explore, in depth, a comparatively narrow subject which may be topical or of special interest.

Bachelor of Arts: Quantification

MATH 499: Foreign Studies
1-12 Credits/Maximum of 12
Courses offered in foreign countries by individual or group instruction.

Bachelor of Arts: Quantification

International Cultures (IL)