MINERAL PROCESSING (MNPR)

MNPR 301: Elements of Mineral Processing
3 Credits
Introduction to mineral process engineering. Sampling, sizing, comminution, physical and chemical processes, applications to industrial practice. Pollution control.

Enforced Prerequisite at Enrollment: (CHEM 110 or CHEM 106) and MATH 141

MNPR 401: Mineral Process Engineering
3 Credits
Unit operations for processing particulate materials: comminution, screening, classification, slurry pumping, thickening, filtration, etc.; application to mineral processing plant design.

Enforced Prerequisite at Enrollment: MNPR 301 and (MATH 250 or MATH 251)

MNPR 401H: Mineral Process Engineering
3 Credits
Unit operations for processing particulate materials: comminution, screening, classification, slurry pumping, thickening, filtration, etc.; application to mineral processing plant design.

Honors

MNPR 413: Mineral Processing Laboratory
1 Credits
A laboratory study of the chemical and physical principles involved in practical mineral processing operations.

Enforced Prerequisite or Concurrent at Enrollment: MNPR 301

MNPR 426: Aqueous Processing
3 Credits
A study of the chemical and engineering principles pertinent to metal processing in aqueous systems: hydrometallurgical extraction, plating, materials preparation. MATSE (MN PR) 426 Aqueous Processing (3)

This 3-credit course deals with the chemical and engineering principles underlying the aqueous processing of metals: metal extraction from primary and secondary sources, electroplating, and metal finishing, powder synthesis, energy storage and conversion, and treatment of recycling of metal-containing toxic wastes. 1. Physico-Chemical Principles - Thermodynamic, chemical kinetic and transport factors which control hydrochemical processes (leaching; precipitation; adsorption; solvent extraction; ion exchange; electrowinning, electrorefining and electroplating; membrane processes; energy storage and conversion); graphical representation of homogeneous and solid/solution equilibria; chemical reagents. 2. Engineering Principles - Reactor design and staged operations; ideal batch, continuous stirred-tank and plug-flow reactors; fluidized bed reactors; electrochemical reactors; multistage separation processes (solid-liquid, liquid-liquid, and gas-liquid systems). 3. Process Synthesis - Design of metal separation (extraction, refining, waste treatment) materials synthesis, metal finishing, and energy storage/conversion processes and system-integration of unit operations, industrial practice. Emphasis on closing circuits to minimize or eliminate waste effluents.

Enforced Prerequisite at Enrollment: EME 301 or MATSE 401
Cross-listed with: MATSE 426

MNPR 496: Independent Studies
1-18 Credits/Maximum of 18

Creative projects, including research and design, which are supervised on an individual basis and which fall outside the scope of formal courses.