SURVEYING (SUR)

SUR 111: Plane Surveying

4 Credits

Plane surveying principles; basic measurement statistics; use and care of equipment; traversing, area, and coordinate computations; differential leveling; RTK-GPS measurements. SUR 111 Plane Surveying (4) The objectives of this first course in surveying is to introduce the surveying profession and cover the fundamental methods of plane surveying which include use and care of equipment, field procedures, computations, and measurement error theory. As a result of completing the classroom component of the course, students will be able to: (1) make accurate conversions between commonly used surveying units, (2) apply the rules of significant figures to surveying measurements and calculations, (3) identify sources and types of error in surveying measurements, (4) understand differential leveling theory including note form, survey closure, and loop adjustment, (5) compute the standard error of a set of repeated measurements and establish an acceptable range of observed values based upon a specified level of confidence, (6) adjust a set of measured angles and compute line directions for a closed traverse, (7) compute and adjust by compass rule the departures and latitudes of a closed traverse, (8) apply coordinate geometry methods to compute coordinates, direction, distance, and area. As a result of completing the laboratory component of this course, students will be able to: (1) perform a differential leveling survey within FCGS third order work, (2) perform a closed traverse survey with a relative precision of 1/10,000 using a total station, (3) use the RTK-GPS field method to measure position of stations in a closed traverse, and (4) complete a set of traverse computations for a closed traverse and present them in a prescribed format. SUR 111 is a prerequisite to all SUR courses. Student performance is based upon a mixture of homework, field exercises, writing assignments, quizzes, exams and a course portfolio. The final exam is comprehensive. All field exercises are held outside and on the campus grounds. Students must dress for weather conditions of the day of the laboratory exercise.

Enforced Concurrent at Enrollment: MATH 26 or MATH 40 or MATH 140

SUR 121: Elementary Surveying

3 Credits

The objectives of this first course in surveying are to introduce the surveying profession and cover the fundamental surveying principles, techniques, and practices. Concepts covered in the course include: Introduction to surveying principles and practices; basic measurement statistics; use and care of equipment; differential leveling; measurement and computations of distances, angles, and directions; field note keeping; surveying safety; surveying profession. As a result of completing the classroom component of the course, students will be able to: (1) make accurate conversions between commonly used surveying units, (2) apply the rules of significant figures to surveying measurements and calculations, (3) identify sources and types of error in surveying measurements, (4) collect and adjust differential leveling measurements, (5) understand angles, azimuths, and bearings used in surveying, (6) collect angle and distance measurements using modern surveying instruments and techniques, (7) compute accuracy / precision statistics for angle and distance measurements, (8) collect measurements of coordinate geometry problems.

Enforced Concurrent at Enrollment: MATH 26 or MATH 40 or satisfactory performance on the mathematics placement examination.

SUR 122: Control Surveying

3 Credits

This course builds on the concepts learned in SUR 121 to establish vertical and horizontal control using traversing procedures and GNSS techniques. Students will be able to: (1) collect angle and distance measurements; (2) adjust a set of measured angles and compute line directions for closed and link traverses; (3) compute and adjust the departures and latitudes of a closed and link traverse; (4) use adjusted observations to compute adjusted coordinates, directions, distances, and area; (5) understand the relationships between the physical earth, the geoid, and ellipsoid; (6) perform coordinate transformations from geocentric to geodetic coordinates, and from geodetic to mapping coordinates; (7) understand the use of map projections in the state plane coordinate system, and the use of coordinate systems in large mapping and construction projects; (8) perform reduction of observations; (9) understand basic GNSS measurement principles; and (10) establish vertical and horizontal control using a variety of GNSS techniques. As part of the outdoor labs students will be able to: (1) perform a closed and link traverse survey using a total station; (2) use total station technology to establish vertical and horizontal control; (3) use GNSS technology to establish vertical and horizontal control; (4) design and establish vertical and horizontal control to support mapping and construction applications.

Enforced Prerequisite at Enrollment: SUR 121

SUR 132: Surveying Software Analysis Tools

3 Credits

SUR 132 is an introductory course in computer programs that are frequently being used in surveying for mapping, land information systems, and surveying product delivery. Standard industry software is used, including but not limited to CAD and GIS, for generating surveying products, maps, and databases. As part of the course students will be able to: (1) draw planimetric features relevant for surveying (e.g., deeds, parcels, buildings, sidewalks, etc.) (2) create contours and terrain models from various datasets (e.g., ground shots, aerial datasets, satellite datasets) to depict topography; (3) create and edit geospatial datasets and geodatabases relevant for surveying, mapping and land parcel information systems; (4) convert and transfer datasets from CAD to GIS and vice versa (interoperability between different software); (5) understand basic mapping elements and map design concepts; and (6) use of appropriate scale, mapping, and visualization concepts for technical and non-technical communication with maps.

Enforced Concurrent at Enrollment: SUR 122

SUR 162: Methods in Large Scale Mapping

3 Credits

CAD applications in mapping; data collection using traditional and satellite techniques; map compilation; COGO. SUR 162 Methods in Large Scale Mapping (3) SUR 162 is the basic mapping course in the curriculum. The concept of reference datum is introduced; the US national spatial reference system is described. Map design considerations such as scale are introduced. Map compilation emphasizes computer aided drafting. Basic standards and procedures of control and mapping surveys are introduced. Basic concepts of coordinate geometry are introduced. Laboratory exercises incorporate
practice in control and mapping surveys, in mapping compilation and in
application of coordinate geometry. As a result of completing the
classroom component of the course students will be able to (1) describe
hard copy and softcopy maps, (2) describe the standard series of maps
in the US National Mapping Program, (3) describe US national map
accuracy standards, (4) apply map design considerations such as
map clarity, order and balance, (5) calculate scale and map layout, (6)
apply procedures of interpolation to calculate positions of contours, (7)
describe the use of triangulated irregular networks to create contours,
(8) describe components of the US national spatial reference system, (9)
describe design considerations for triangulation, trilateration, traverse
and precise leveling, (10) describe the survey procedures used to locate
contours, (11) describe procedures to make a digital elevation model,
(12) design a survey to collect mapping data using a data collector to
enable efficient drawing, (13) use coordinate geometry to calculate
position and elevation of a feature, to calculate direction and distance
of a line, to calculate coordinates of a station using intersection, to
calculate coordinates of an occupied station using resection. As a
result of completing the laboratory component of the course students
will be able to (1) set up a new map compilation project in a mapping
program, (2) create and use blocks for standard map features (eg borders,
title boxes), (3) use mapping program COGO features, (4) use mapping
program contouring capabilities to create a digital terrain model, (5) use
mapping program features to load collected positional data and draft a
manuscript, (6) design and conduct a control traverse, and a mapping
survey to collect data using an electronic data collector.

**Enforced Prerequisite at Enrollment:** SUR 111 and EDSGN 100

**SUR 212: Route and Construction Surveying**

4 Credits

Circular, compound, spiral horizontal curves; equal, unequal tangent
vertical curves; alignments, earthwork; control, building, pipe, street,
and as-built construction surveys. SUR 212 Route and Construction
Surveying (4) SUR 212 builds directly upon the fundamental surveying
principles presented in SUR 111 (Plane Surveying), particularly traverse
methods and coordinate geometry calculations. The course covers
the fundamental geometric computations for street alignment design
starting with simple circular, compound circular and spiral horizontal
curves. This includes computation for intersection angles, radius, length,
tangents, degree of curvature, stationing and stake-out calculations
using coordinate geometry methods. The topics of vertical curve analysis
follow which includes street grade, rate of change of grade, stationing,
low and high points, passing a curve through fixed point and other
alignment related analysis and design. Both equal tangent and unequal
tangent vertical curves are discussed. Vertical curves are followed by
street cross-sections, templates, slope stake locations, cut/full,
earthwork computations and other aspects of 3-D alignment design.
Once curve geometry and street alignment calculations are covered,
the course moves into field stake-out methods for construction. Street
alignment stake-out is covered first, using industry standard software
with traditional and RTK-GPS equipment. A road alignment project is used
to combine the aspects of geometric analysis and design with field stake-
out methods including a control survey. Beyond street stake-out, other
construction surveys are addressed including building, pipe line, culverts,
storm and sanitary sewers, as-built and other construction related
surveys. The laboratory exercises present field methods for construction
projects in accordance with design specifications. Computations of
earthwork volumes are also covered for other construction projects
beyond that of street alignments.

**Enforced Prerequisite at Enrollment:** SUR 162

**SUR 213: Route and Construction Surveying**

3 Credits

SUR 213 builds upon and uses concepts from SUR 121 and SUR 122
applies them in route and construction applications. The course covers
stake out subdivisions and buildings for development, horizontal and
vertical roadway computations and stake-out. In addition, the course
provides a base knowledge of buildings, bridges, culverts, pipelines,
sewers, earthwork volumes, erosion and sedimentation, and as-built
as it pertains to survey construction. The laboratory exercises focus on
field methods for route and construction layout projects in accordance
with design specifications. CAD is being used throughout the course
for design and layout lab assignments, and to prepare surveying deliverables.

**Enforced Prerequisite at Enrollment:** SUR 122

**SUR 221: Large-scale Mapping Surveys**

3 Credits

SUR 221 is the basic mapping course in the curriculum, which also
considers project management and client considerations. The course
begins with client considerations and outlying what products will be
delivered; typically, a report of record of survey maps and analyses
showing the degree to which required survey standards have been met.
Economic feasibility, contracting, budgeting and project management
concepts of mapping surveys are also considered. Students complete
a control survey using GNSS methods that will be used to support the
data collection. Through traversing and detailing using a total station,
students collect side shots and ground shots. GNSS techniques are also
introduced for collecting side shots and ground shots. Collected datasets
are used to create a topographic map in CAD to meet client requirements
and specifications. Students compile a detailed report of survey.

**Enforced Prerequisite at Enrollment:** SUR 122 and SUR 132 Enforced
Concurrent at Enrollment: EDSGN 100

**SUR 222: Photogrammetry**

3 Credits

Basic principles of metric photogrammetry with single and stereopair
photos; coordinate transformations; map production with stereo imagery;
flight planning. Lab. SUR 222 - Photogrammetry (3) Photogrammetry
covers the basic principles of aerial photography and the geometry
of the optics in relation to aerial cameras. Mathematical theories for
refining and processing measurements from single aerial photographs
are developed. Such measurements are transformed to obtain real world
coordinates of features on the surface of the earth. Two-dimensional
conformal, affine, and projective coordinate transformation equations and
the three-dimensional conformal coordinate transformation equations
are developed and applied to the measurements on the photographs.
In addition, the theory underlying the geometry of stereopairs of
photographs are developed and used to determine elevations of features
on the photograph. Stereographic equipment and software are used to
produce accurate topographic maps of the overlap areas between
stereopairs. The course also covers procedures and considerations for
planning an aerial photography mission which include flight planning,
cost analysis, equipment selection, placement of photo controls, and
overall project management.
**Enforced Concurrent at Enrollment:** SUR 162

**SUR 241: Surveying Measurement Analysis**

*3 Credits*

Statistical error analysis of surveying measurements; propagation of random errors; confidence intervals and statistical testing. Lab. SUR 241 Surveying Measurement Analysis (3) Surveying Measurement Analysis explores the fundamental concepts of statistical error analysis with applications to surveying measurements. It covers the normal distribution function and theories describing the fundamental procedures in data including measures of central tendency and measures of data variation. It then explores sampling distribution theory and develops statistical confidence intervals and testing using the $X^2$, students $t$, and $F$ distributions. Fundamental concepts in the propagation of variance are developed and applied to the traditional surveying observations of angles, distances, azimuths, elevation differences. These error propagation techniques are further used to explore the propagation of variance in traditional traverse computations. The accompanying lab exercises help reinforce and validate the theoretical foundations of this class.

**Enforced Prerequisite at Enrollment:** SUR 111 Enforced Concurrent at Enrollment: MATH 83 or MATH 140

**SUR 262: Coordinate Systems in Map Projections**

*2 Credits*

Introduction to coordinate systems used in the Lambert, Mercator, Transverse Mercator, and UTM map projections; reduction of surveying observations. SUR 262 Coordinate Systems in Map Projections (2) Coordinate systems in map projections covers the fundamental relationships between the physical earth, the geoid, the ellipsoid and map projections. It will explore the use of map projections in state plane coordinate systems, and the use of these coordinate systems in large mapping and construction projects. The course explores the corrections that must be made to properly use these coordinate systems including the reduction of observed elevations, distances, azimuths and angle.

**Enforced Concurrent at Enrollment:** (MATH 110 or MATH 140) and SUR 162

**SUR 272: Cadastral Surveying**

*3 Credits*

Evolution of land records systems; PLS: property ownership and conveyancing; common and statute law; rules of construction; boundary location procedures.

**Enforced Prerequisite at Enrollment:** SUR 111

**SUR 296: Independent Studies**

*1-18 Credits/Maximum of 18*

Creative projects, including research and design, that are supervised on an individual basis and that fall outside the scope of formal courses.

**SUR 297: Special Topics**

*1-9 Credits/Maximum of 9*

Formal courses given infrequently to explore, in depth, a comparatively narrow subject which may be topical or of special interest.

**SUR 313: Integrated Surveying**

*3 Credits*

Control, boundary, mapping and construction surveys; survey planning, coordinating; report and record map preparation. SUR 313 Integrated Surveying (3) SUR 313 is intended for SRT and SUR E students in their last year in the programs. Objectives of SUR 313 are directed toward providing instruction and practical experience in activities common in surveying practice, experience requiring the integration of virtually all abilities gained in previous surveying courses. The class is organized as a student surveying company with the instructor as general supervisor. Objective 1 of the student surveying company is to analyze a letter from a client (the instructor) requesting a survey. The letter will request a survey (typically ALTA boundary or construction). The client letter will specify standards (ALTA and other) the survey is to meet, standards commonly required in survey practice. The client letter will specify products to be delivered, typically a report of record survey maps and analyses showing the degree to which required survey standards have been met. In addressing objective 1, students determine exactly what work needs to be done to satisfy client requirements. Typically these include several sub-surveys: (1) a relatively long-range satellite (GNSS) survey to bring control into the project area, (2) a traditional local control survey to create a control network to control subordinate surveys and the surveys producing what the client has requested, typically boundary retracement and mapping surveys. The result of work on objective 1 is the organization of the class into coordinating groups, one per sub-survey plus two additional groups for report compilation and editing and map production and editing. Objective 2 of the student surveying company is to develop detailed work plans for sub-surveys, report preparation and map production. The result of work on objective 2 is the set of work plans. A written contract (as a letter of understanding) between the student surveying company and the client is prepared. Objective 3 is to perform that record search, field work, data analysis, mapping and preliminary report writing for the sub-surveys necessary to meet client requirements. Objective 4 is to compile the final report of survey.

**Enforced Prerequisite at Enrollment:** SUR 162 Enforced Concurrent at Enrollment: SUR 212 and SUR 272

**SUR 341: Adjustment Computations**

*3 Credits*

Matrix methods in least squares; random error propagation; observation equation model; conditions between parameters; basic post-adjustment statistical analysis. SUR 341 - Adjustment Computations (3) Adjustment computations covers the basic theory and mechanics of a least squares adjustment using the traditional surveying observations of distances, angles, azimuths, and elevation differences. It explores the theory of error propagation, and uses this theory to determine the precision of indirectly measured quantities. It explores post-adjustment analysis through the use of various statistical tests, and error ellipse computation and analysis. This course primarily focuses on the least squares adjustment and analysis of differential leveling, triangulation, trilateration, traverse and network observations.

**Enforced Prerequisite at Enrollment:** SUR 262 Enforced Concurrent at Enrollment: CMPSC 201 and STAT 200 and SUR 241
SUR 351: Geodetic Models

3 Credits

Three dimensional geodesy: computations on the ellipsoid; map projections; reduction of observations and elements of physical geodesy. SUR 351 Geodetic Models (3) Course covers the basic gravimetric and geometric geodesy aspects as related to surveying. Motions of the Earth and the effect on reference systems are explored. The Earth’s gravity field, its measurement, reduction of gravity observations to the geoid, uses for gravity and gravity anomalies are studied. Different coordinate reference systems are studied including astronomic, geodetic, and satellite coordinate systems. Transformation between the various coordinate systems is covered while also considering crustal plate motion. Basic mathematical representations and transformations between various representative ellipsoids are explored. Satellite navigation and positioning is discussed at a rudimentary level. Both point positioning and relative positioning techniques are discussed.

Enforced Prerequisite at Enrollment: MATH 141 and SUR 262

SUR 352: Geometric and Physical Geodesy

3 Credits

This course provides a thorough background on geometric and physical geodesy. With respect to Geometric Geodesy the course covers: Computations to the ellipsoid and coordinate transformations between various coordinate systems, considering crustal plate motion. The astronomic, geodetic, and satellite coordinate systems are studied. Satellite navigation and positioning is discussed at a rudimentary level. With respect to Physical Geodesy the course covers: The Earth’s gravity field, its measurement, reduction of gravity observations to the geoid, uses for gravity and gravity anomalies are studied. Geoid determination, Stokes’s formula, the remove-restore methods, least-squares collocation. Vertical positioning and height datums and systems. Principles and applications of airborne, terrestrial, and satellite gravimetry and satellite altimetry.

Enforced Prerequisite at Enrollment: SUR 122 Enforced Concurrent at Enrollment: (MATH 230 or (MATH 231 and MATH 232)) and (MATH 251 or (MATH 250 and MATH 252))

SUR 361: Surveying Laser Scanning

3 Credits

Introduction to laser scanning surveying. Principles of Light Detection And Ranging (LiDAR) technologies from terrestrial and mobile platforms. The process of point cloud generation from LiDAR techniques are discussed. The course covers the registration and geo-referencing process from multiple scans for indoor and outdoor data acquisition, as well as the direct geo-referencing and point cloud generation from mobile platforms. Error sources in terrestrial and mobile sensors and their system calibration procedures for quantifying and modeling such errors. Industry standard software is used for processing and analysis of point clouds for surveying applications related to 3D modeling, terrain modeling, creating drawings in CAD, and change detection of natural and man-made structures.

Enforced Prerequisite at Enrollment: SUR 122 Enforced Concurrent at Enrollment: SUR 132 and SUR 241 and (MATH 110 or MATH 140)
discussed. The principles of land description composition are provided, and the students apply them in realistic scenarios that are writing intensive. Students perform legal research in real case studies, collect data related to record boundaries (e.g., previous deeds), and make an analysis of the property's history and property survey. Students will have to write extensive reports of their findings and use principles of effective surveying communication to prepare a report to the client including "record of survey" maps.

**Enforced Prerequisite at Enrollment:** SUR 122 and SUR 132

**Writing Across the Curriculum**

SUR 381: Stormwater Hydraulics and Hydrology

4 Credits

Hydraulics: statics, continuity, energy, friction; hydrology: rainfall, abstractions, travel time, runoff; stormwater design: sewers, culverts, basins, erosion; municipal regulations. SUR 381 Stormwater Hydraulics and Hydrology is an elementary treatment of common design practices used to create stormwater management plans for small to medium sized land development projects. Erosion and sedimentation design is also addressed within the context of a stormwater management plan. The course is intended for engineering students who are not required to take formal fluid mechanics or hydrology courses, yet have a need to understand or complete the design aspects of stormwater management as it relates to their professional practice. Some state professional registration laws refer to this type of engineering design as "minor engineering" which is engineering design as it relates to land surveys connected to land development activities. Other types of "minor engineering" include street alignment, sanitary sewers, water lines, utilities and site grading. The course contains three segments. The first segment covers the elementary hydraulics necessary to design drainage structures and storm water detention facilities. These topics include fluid statics, continuity, conservation of mass, conservation of energy, friction losses, minor losses, energy grade line, open channel flow, weirs and orifices. The second segment covers elementary hydrology methods used to analyze runoff from land development sites and small to medium watersheds. The hydrology topics include watershed characteristics, rainfall, abstractions, runoff, time of concentration, peak flow methods, hydrograph methods, basic channel routing and detention basin routing. The third segment covers government regulations and common design methods used to design storm sewers, detention basins and erosion control plans. A project includes the design of a multiple-element storm sewer system, a stable open channel, a detention facility with a multiple outlet structure, and some erosion control measures.

**Enforced Prerequisite at Enrollment:** MATH 141 and Sixth Semester standing

SUR 382: Subdivision Design

2 Credits

Introduction to Land Development Design is targeted for students in the Surveying Engineering Technology program. The course covers the basic surveying principles as these are applied to residential development and the subdivision of parcels. Overview of private restrictions and public regulations of land use, the planning process, local zoning ordinances and subdivision regulations. Students complete a basic design project in CAD. The design follows the Subdivision and Land Development Ordinance (SALDO) code, and it also considers topography, zoning, utilities, existing and proposed roads, and client requirements.

**Enforced Prerequisite at Enrollment:** SUR 213 and SUR 221

**Concurrent at Enrollment:** SUR 373W

SUR 421: Advanced Photogrammetry

3 Credits

Advanced mathematical methods for processing digital imagery and point clouds, and applications in surveying. This course is designed to provide a deeper understanding of the mathematical models used in Photogrammetry. New techniques are also presented, such as Structure from Motion (SFM) and Simultaneous Localization and Mapping (SLAM) for surveying applications. Platforms that are considered are terrestrial (close-range photogrammetry) and aerial (UAS and airborne photogrammetry). The course covers image alignment and georeferencing using ground control points (indirect) and multisensory direct georeferencing. Occlusion detection and true-orthophoto generation, together with image block mosaicking and refinement, are presented. Camera calibration and self-calibration approaches are discussed. The course also discusses principles and requirements for designing point cloud surveys that meet project needs.

**Enforced Prerequisite at Enrollment:** SUR 132 and SUR 222 and MATH 220

SUR 422: Digital Photogrammetry

3 Credits

Mathematical methods for processing digital imagery, creating digital elevation models and ortho-photographs, and applications in spatial data infrastructure. SUR 422 Digital Photogrammetry (3) As a continuation to an existing photogrammetry course, this course is designed to provide a deeper understanding of the mathematical principles of photogrammetry as well as current applications of photogrammetric mapping. In recognition of the increasing use of digital images in geospatial technologies, especially in applications involving natural resource inventory and mapping, this course provides advanced knowledge in softcopy photogrammetry. This course deals with mathematical methods for processing tilted aerial photographs. Two- and three-dimensional coordinate transformation methods for correcting the geometry of digital imagery are taught. These are followed with the development of collinearity equations for analytical aerotriangulation and the adjustment of a block of photographs. Extraction of contours and development of elevation models are also taught. Creation of digital ortho-photographs, mosaics and color balancing of mosaicked images are discussed. Applications of ortho-rectified digital images in geospatial technologies are also taught. Laboratory exercises include the use of computer hardware and software to enhance and classify remotely sensed images, apply softcopy photogrammetry methods to develop contour maps, digital elevation models, and digital orthophotographs from a block of photographs. The course has direct relationship to photogrammetry, adjustment computations, and multipurpose land information systems which are all taught in the surveying program. It is a required course which is offered to baccalaureate degree students in the surveying engineering program. Academic achievement is evaluated through quizzes, home works, and examinations.

**Enforced Prerequisite at Enrollment:** MATH 220 and SUR 362
SUR 424: Monitoring Applications in Surveying

3 Credits

Engineering structures, natural and man-made, must be monitored periodically to ensure their safety of operation. Monitoring is a challenging task that necessitates robust surveying methods. This course discusses advanced mathematical and surveying methods for monitoring applications in surveying engineering. Monitoring using total stations, GNSS, and point clouds methods are discussed. Point cloud methods include laser scanning and photogrammetric datasets acquired from terrestrial and aerial platforms. Often in monitoring applications an integration or combination of the abovementioned datasets is necessary; therefore, this course covers the optimal integration of these datasets. The course covers multi-epoch comparisons and robust statistical analysis to distinguish between actual changes and apparent changes due to noise. Monitoring of one or more of the following structures are covered: buildings, bridges, dams, tunnels, levees, rockfalls, landslides, and coastal erosion.

**Enforced Prerequisite at Enrollment:** SUR 441 and SUR 241

**Enforced Concurrent at Enrollment:** SUR 441

SUR 432: Geospatial Applications in Surveying

3 Credits

Airborne and satellite methods are increasingly used in surveying applications for topographic mapping, building extraction and modeling, and monitoring. This course focuses on advanced geospatial principles and techniques in surveying with emphasis on GIS tools for mapping, identification, extraction, and interpretation of both physical and cultural landscape features. Visible imaging, RADAR, hyperspectral, and LiDAR sensors for airborne and satellite platforms are presented. Georeferencing of airborne and satellite datasets. Terrain filtering and modeling, feature extraction methods, classification, and segmentation in GIS using imagery and point clouds. Hydrographic approaches from airborne LiDAR and satellite imagery are covered. This course also brings an introduction to airborne and spaceborne SAR Interferometry for terrain mapping and monitoring applications.

**Enforced Prerequisite at Enrollment:** SUR 132 and SUR 222 and SUR 361

**SUR 441: Data Analysis and Project Design**

3 Credits

Post least squares adjustment analysis of control networks, statistical testing, blunder detection, network design considerations, and computer optimization techniques.

**Enforced Prerequisite at Enrollment:** STAT 200 and SUR 341

**SUR 455: Precise Positioning Systems**

3 Credits

Stellar coordinate systems; geodetic reference coordinate systems; satellite orbital theory; global positioning systems; pseudo-ranging; GPS vector adjustments.

**Enforced Prerequisite at Enrollment:** SUR 351 and SUR 441

SUR 462: Parcel-Based Geospatial Information Systems

3 Credits

Acquisition processing of land parcel data; development of land information system and applications in geospatial information technology. SUR 462 Parcel-Based Geospatial Information Systems (3) People and cultures around the world have different perceptions of land. Land has different value to many people. As a natural resource, with finite size, there are always competing interests when it comes to allocation use and management of units of land. The basic unit of land is the parcel. All activities are associated with land parcels. With such competing interests, it is important to manage land and its resources in an effective manner so as to ensure its sustainability. To ensure proper stewardship of land, data about each land parcel must be maintained so that information from parcel-based geodatabases may be used to support decisions involving land, people, and communities. Parcel-based information technology serves as a component of the geospatial technology with special applications in placed-based information. This course builds on the knowledge obtained from SUR 362, Geospatial Information Engineering course. It begins by considering various perceptions of the use and value of land to different cultures, communities, and organizations. A justification is made for the need to manage land and resources in land in order to promote good stewardship. The use of technology for land parcel information management is discussed. From there the course progresses through land parcel data types and sources, data conversion and geodatabase development. Applications of land parcel data in place-based information management are discussed. Accuracy considerations for parcel data in various applications are also discussed. Spatial analysis and methods for presenting or communicating results are discussed.

**Enforced Prerequisite at Enrollment:** SUR 362 and SUR 372W

SUR 471: Professional Aspects of Land Surveying

3 Credits

Ethical issues and legal limits of practice; surveyor as an expert witness; surveyor-client relationship; responsibilities to the profession.

**Enforced Prerequisite at Enrollment:** SUR 372W

SUR 482: Land Development Design

3 Credits

The land development process; geometric, environmental, aesthetic aspects of development; local regulatory requirements; preparation of final plat and report. SUR 482 Land Development Design (3) Land development design is designed for seniors in Surveying Engineering and covers the basic principles of residential design and development. The objective of the course is to provide students with exposure to elements of the land development process from an engineering perspective. Topics covered include land development regulations, site analysis of soils, site evaluation in terms of opportunities and constraints, sketch design, site layout, preliminary design, street layout including horizontal and vertical design, grading plan, drainage design, stormwater management, sewer and water, and erosion and sedimentation controls. Students work in teams of two or three on a design project for a local property. Students will utilize AutoCAD Civil 3D (or similar software) and the Virginia Tech/Penn State Urban Hydrology Model (VT/PSUHM) (or similar) in the project design. A site visit to the design property is included in the course. At the end of the course, student teams will exchange their
project designs and critique each other’s work from the viewpoint of a township engineer. Designs are evaluated for adherence to a pre-selected municipal subdivision and land development ordinance (SALDO). Students are required to present their final designs to the class. They must be prepared to explain their work and defend any design elements that are questioned during the presentation. After completion of this course, students will be able to: 1) evaluate a site for land development potential, 2) prepare sketch designs for a proposed land development site, incorporating opportunities and constraints, 3) prepare a preliminary design including street alignment for a residential subdivision, sanitary sewer for a residential subdivision, storm sewer with inlets and inverts and a grading plan; and 4) prepare a mock final plan for public review and presentation.

**Enforced Prerequisite at Enrollment:** SUR 212 and SUR 372W Enforced Concurrent at Enrollment: SUR 381

SUR 490: Seminar in Surveying

1 Credits

Individual or group work in surveying.

**Enforced Prerequisite at Enrollment:** Senior standing

SUR 496: Independent Studies

1-18 Credits/Maximum of 18

Creative projects, including research and design, that are supervised on an individual basis and that fall outside the scope of formal courses.

SUR 497: Special Topics

1-9 Credits/Maximum of 9

Formal courses given infrequently to explore, in depth, a comparatively narrow subject that may be topical or of special interest.