WILDLIFE AND FISHERIES SCIENCE (WFS)

WFS 209: Wildlife and Fisheries Conservation
3 Credits
Survey of current and historical issues in wildlife and fisheries conservation; emphasis on vertebrate biodiversity, habitat management and protection, and populations. W F S 209 Wildlife and Fisheries Conservation (3) The conservation and management of our natural resources is critical to all aspects of human existence. Wildlife and fishery resources are integral to our food supplies, the quality of our lands, and form a deep foundation of our culture. This course will introduce students to fishery and wildlife and basic ecological principles as they relate both to the natural and human-influenced environment. It is open to all students with a basic background in biology. Students will learn to identify and understand the interacting components of wildlife and fisheries systems and to apply basic ecological principles to current wildlife and fisheries management and environmental issues. The course will explore the basic tools, practices, and concepts used in the conservation and management of fish, wildlife, and their respective habitats. The course will also explore the human dimensions aspects of managing common property resources, like fish and wildlife, including the roles various stakeholders have in the management of these resources.

Prerequisite: BIOL 110

Bachelor of Arts: Natural Sciences
General Education: Natural Sciences (GN)

WFS 209H: Wildlife and Fisheries Conservation
3 Credits
Survey of current and historical issues in wildlife and fisheries conservation; emphasis on vertebrate biodiversity, habitat management and protection, and populations.

Bachelor of Arts: Natural Sciences
General Education: Natural Sciences (GN)
Honors

WFS 296: Independent Studies
1-18 Credits/Maximum of 18
Creative projects, including research and design, that are supervised on an individual basis and that fall outside the scope of formal courses.

WFS 297: Special Topics
1-9 Credits/Maximum of 9
Formal courses given infrequently to explore, in depth, a comparatively narrow subject which may be topical or of special interest.

WFS 300: The Vertebrates
2 Credits
Overview of the evolution, systematics, ecology, and behavior of the subphylum vertebrata. W F S 300 The Vertebrates (2) The purpose

of this course is to introduce students to vertebrate zoology and will include overviews of vertebrate evolution, systematics, anatomy, physiology, ecology, and behavior. The course will begin by introducing the phylum Chordata. The cephalochordata, amphioxus (Branchiostoma lanceolatum), will be discussed and used as a model of a prevertebrate. The basic organization and theories of vertebrate evolution will be reviewed. The superclasses, Agnatha and Gnathostomata, will be introduced. The origin of each of the major group of vertebrates will be traced. The general approach will be phylogenetic and include discussions of the major changes associated with each group’s evolution and selected elements of their extant diversity and biology.

Prerequisite: BIOL 110

WFS 301: Vertebrate Laboratory
2 Credits
Overview of the anatomy, identification, collection, and preservation of the vertebrates. W F S 301 Vertebrate Laboratory (2) The purposes of this course are to introduce students to the anatomy of the vertebrates and to expose students to the diversity of vertebrates that reside in Pennsylvania. Students will dissect and learn the anatomy of the dogfish, frog, and cat or mink. Additional laboratory periods will concentrate on collecting/observing, and identifying fish, amphibians, reptiles, birds, and mammals. Museum curation techniques will be taught, and students will be required to construct dichotomous keys to specimens that inhabit Pennsylvania. The identification part of the course is meant to introduce students to representatives of the taxa that occur within the Commonwealth in preparation for higher-level courses in ichthyology, herpetology, ornithology, or mammalogy. Collection techniques will emphasize the proper collection and preservation of organisms for natural history museums.

Prerequisite: or concurrent: W F S209 , W F S300

WFS 310: Wildlife and Fisheries Measurements
3 Credits
Introduction to field and laboratory approaches for collecting, analyzing, and communicating data regarding wildlife and fish populations and their habitats. W F S 310 Wildlife and Fisheries Measurements (3) This course will introduce students to basic measurements used to describe fish and wildlife populations and their habitats. Laboratory exercises will stress sampling approaches and implementation, common techniques for collecting information about amphibians, fish, birds, and mammals and their respective habitats, mapping and orienteering, and methods for summarizing and reporting findings.

Prerequisite: or concurrent: W F S209 , STAT 240

WFS 406: Ornithology Laboratory
2 Credits
Laboratory and field identification of Pennsylvania birds, avian ecology and behavior, field survey techniques. W F S 406 Ornithology Laboratory (2) Ornithology Laboratory establishes the basic skills for identifying bird species in the field. This laboratory and field course is open to students with some background in wildlife and should be taken after completing or at the same time as the ornithology lecture course. The objectives of this course are for students to use laboratory specimens, identification software, field guides, and instructor-led field trips to 1) define, locate, and recognize anatomical features used to describe birds and characterize
families; 2) recognize and identify approximately 160 species of birds by sight and approximately 60 by song in the field and/or lab; and 3) describe habitat, seasonal abundance, and distribution of bird species within the state. Most weeks include an introductory lecture followed by field instruction.

Prerequisite: or concurrent: W F S209, W F S407

WFS 407: Ornithology

3 Credits

Introduction to the biology, ecology, adaptations, and conservation of birds.

Prerequisite: BIOL 110, W F S209

WFS 408: Mammalogy

3 Credits

IDENTIFICATION, SYSTEMATICS, CHARACTERISTICS, ADAPTATIONS, ECOLOGY, BEHAVIOR, NATURAL HISTORY AND CONSERVATION, AND SOCIO-ECONOMIC ASPECTS OF MAMMALS.

Prerequisite: BIOL 110

WFS 409: Mammalogy Laboratory

2 Credits

Laboratory and field identification of mammals, ecology and behavior of mammals, field survey techniques. W F S 409 Mammalogy Laboratory (2) Mammalogy Laboratory provides the necessary skills for identifying North American mammals. Taken concurrently with or after completing the mammalogy lecture course, this laboratory and field course is open to students with some background in wildlife. The objectives of this course are for students to 1) identify North American mammals by skulls and skins, 2) identify eastern North American mammals by tracks in the field, 3) capture and measure small mammals, and 4) gain an understanding of the characteristic behavior and ecology of North American mammals. Fields skills include animal handling, tracking, and observation. Additional skills may include skin and skull preparation and museum techniques for the care of mammals.

Prerequisite: or concurrent: W F S209, W F S408

WFS 410: General Fishery Science

3 Credits

Introduction to the study, management, and uses of fish populations; methods of investigation, culture, and harvest of fishes.

Prerequisite: BIOL 210 or W F S209

WFS 422: Ecology of Fishes

3 Credits

Role of fishes in aquatic communities and general ecosystems. Environmental factors influencing fish as individuals, populations, and communities.

Prerequisite: BIOL 220W or W F S209

WFS 430: Conservation Biology

3 Credits

The application of biological principles to issues in the conservation of biodiversity. FOR (W F S) 430 Conservation Biology (3) This course applies basic principles of ecology and genetics to issues regarding the conservation forested ecosystems and their associated fisheries and wildlife. The objective of this course is to provide a broad appreciation of the concepts in conservation biology that are important to solving contemporary natural resources problems. Students will be exposed to the history of conservation biology, values of biodiversity, definitions of species concepts, protecting the genetic structure of species, extinction as a natural process, vulnerability to extinction, biodiversity at the community, ecosystem, and landscape levels, habitat fragmentation, metapopulations, legal aspects of conservation, ecosystem management, exotic species, pollution, human population issues, measuring genetic diversity, attitudes towards nature, ex-situ conservation, and ecosystem restoration.

Prerequisite: BIOL 220W or FOR 308 or W F S209

Cross-listed with: FOR 430

WFS 435: Limnology

3 Credits

Biogeochemistry and natural history of freshwater ecosystems. W F S (E R M) 435 Limnology (3) This course will define and describe major principles (physical, chemical, biological, and ecological) that govern the structure and function of freshwater ecosystems (ponds, lakes, and rivers). Current scientific literature will be critically reviewed and discussed in relation to comparative philosophy, methodology, and case studies that cover a range of topics in limnology. The objectives of E R M (W F S) 435 are to familiarize students with the major physical properties, chemical cycles, taxonomic groups of organisms, and ecological interactions that define and describe the natural function of aquatic ecosystems. The course will use case studies to illustrate and examine pertinent issues (e.g., excessive material loading, introduction to exotic species, habitat fragmentation, and climate change) that can alter the structure and function of aquatic ecosystems. Knowledge of these basic ecosystem principles will be applied towards formulating real-life resolutions to the issues identified in class, in order to better manage aquatic resources (methods to reduce material loads, transport controls of exotic species, habitat restoration, and reduction of global gases). This course will be useful to both undergraduate and graduate students seeking degrees in Environmental Resource Management, Wildlife and Fisheries Science, Ecology, and other related subjects. At the undergraduate level, the course will serve as a 400-level selection in both the Environmental Resource Management and Wildlife and Fisheries Science degree programs. At the graduate level, the course will complement several Wildlife and Fisheries courses that form the compliment of that degree program. Moreover, the course can satisfy the course requirement for ecosystems ecology in the inter-college Ecology graduate program and serve as a breadth course in Water Resources for graduate students in the Watershed Stewardship program.

Prerequisite: BIOL 110, BIOL 220W, CHEM 110

Cross-listed with: ERM 435
WFS 436: Limnological Methods

3 Credits

Application of current methodologies to evaluate the biological, chemical, and physical characteristics of aquatic ecosystems. E R M (W F S) 436 Limnological Methods (3) Limnological Methods will instruct students to apply state of the art analytical measurements in order to gain an understanding of how and why ecosystems support specific biodiversity and biogeochemical cycles. The course will help students define key ecological elements (e.g., ecosystem metabolism, resource limitation, predator-prey relations) in both qualitative and quantitative terms, thereby making them tangible, tractable, and readily understandable. The course will use an instructional rubric to integrate conceptual, analytical, and communicative exercises in order to instruct students about how to evaluate variation in natural ecosystems. This course provides experiential training in the scientific process (rubric), so students can learn by doing, thereby internalizing their knowledge. Course content is organized into three 5-week sections, each of which will emphasize one component of the biogeochemical cycle (physical, chemical, biological). In each section, students will carry out a focused group study designed to evaluate how a pertinent environmental perturbation can affect that component of the aquatic biogeochemical cycle. The course content in each five-week block will have students: 1) review the experimental design and hypothesis, 2) implement the experimental design in the field or laboratory, 3 and 4) process and analyze samples in the laboratory, and 5) make statistical and graphical evaluations of the experimental results relative to their hypothesis (in class) and present these findings in written form. Knowledge of these basic ecosystem principles will be applied towards formulating real-life solutions to the issues identified in class, in order to better manage aquatic ecosystems. This course will be useful to undergraduate students seeking degrees in Environmental Resource Management and Wildlife and Fisheries Science, as well as graduate students pursuing degrees in Ecology, Forest Science, Wildlife and Fisheries Science, Watershed Stewardship, and other related subjects. At the undergraduate level, the course will serve as a 400-level elective in Environmental Resource Management degree program, Wildlife and Fisheries Science degree program, and the inter-college Marine Science option. At the graduate level, the course will complement several Forest Science and Wildlife and Fisheries courses. Moreover, the course can also satisfy the requirements for the ecosystems ecology focus in the inter-college Ecology graduate program. Grades will be based on three research papers, and a final laboratory practical.

Prerequisite: BIOL 110 and CHEM 110
Cross-listed with: ERM 436

WFS 440: Natural Resources Public Relations

3 Credits

The course prepares students to integrate public relations concepts with principles of natural resources management at the community level. W F S 440 Natural Resources Public Relations (3) This course will bring together the elements of previous courses in speech, writing, resource management, and policy to enable the student to present concepts and ideas to the public about management options. The course introduces the student to techniques used in conducting public relations activities as natural resources professional or as a representative of a natural resources agency or NGO. The course will emphasize current topics of sustainability, stewardship, ecosystem management, and conservation, all of which involve integration of ecological, economic and institutional concerns with a strong focus on effectively communicating with citizens at a local community level. Professional presentations will be a major component of the class. Teams will develop a series of photographs to accompany a news feature; write a popular article; edit their peers’ work; design and build a public display on a resource issue; research a current natural resources topic; develop a presentation and present their team’s work to the class for evaluation. They will learn how to develop media contacts, the aspects of hiring, supervision and interviewing for positions, work with both the electronic and print media, write a news release on a controversial topic, which will be evaluated by a professional in the field. A number of guest lecturers will be used to discuss current concerns and relate practitioner’s experiences in the field. The class will focus on individual skills and team-oriented projects. Students will be evaluated by their peers, professionals, and through a written mid-term and an oral final. The course is based on a distinctive sub-discipline in natural resources management, which focuses on "information and education", typically one of five main divisions of a natural resources agency or organization. The central theme of the class is to bring to bear many of the concepts and ideas from a variety of previous classes to focus on the importance of public relations to the resource management field.

Prerequisite: CAS 100, seventh-semester standing, and 6 credits of W F S, FOR, or R P M

WFS 446: Wildlife and Fisheries Population Dynamics

3 Credits

Concepts and estimation of mammalian, avian, and fish populations; processes of mortality, natality, growth, and regulation.

Prerequisite: W F S 209

WFS 447: Wildlife Management

3 Credits

Management of renewable wildlife resources by applying ecological concepts, habitat evaluation, and decision-making; writing and editing reports are emphasized.

Prerequisite: W F S 209 or W F S 309

Writing Across the Curriculum

WFS 447M: Wildlife Management

3 Credits

Management of renewable wildlife resources by applying ecological concepts, habitat evaluation, and decision-making; writing and editing reports are emphasized.

Honors Writing Across the Curriculum

WFS 450: Wetland Conservation

3 Credits

Wetland types, classification, functions and values; hydrology, soils, and plants; introduction to wetland identification and delineation; wetland regulations. E R M (W F S) 450 Wetland Conservation (3) Wetlands are unique ecosystems, differing in many ways from both terrestrial and aquatic environments. They provide recognized values and functions to society, although these values and functions remain difficult to quantify. The study of wetlands is interdisciplinary, requiring background
knowledge in science, management and policy disciplines. This course will explore the variety of wetland types and functions, and emphasize the diverse hydrological, biological, chemical, and physical interactions that occur within wetlands. Because wetlands are recognized as valuable assets in the landscape, issues surrounding wetland management and regulation have taken on increased importance; we will address these issues as well. Topics will also include the restoration of degraded wetlands and wetland creation, along with the construction of wetlands for pollution abatement. Students will become familiar with different wetland types and how they are classified, and will develop skills in understanding the interactions between wetland hydrology, hydric soils and hydrophytic vegetation. They will also develop an understanding of important national and state policies and regulations pertaining to wetlands and their protection and delineation. Classroom assessment will be based on three cumulative exams, homework assignments, and a final project. The course will fulfill 3 credits of electives or technical selections in the Wildlife and Fisheries Science major. Other students university-wide may be interested in the course, and the intention is to develop a course that is accessible to a wide variety of traditional and non-traditional students. For proper instruction, a technology classroom with computer projection equipment will be required. ERM 450 will be offered each fall semester. Enrollment will be limited to 60-80 students.

Prerequisite: ERM 300 or WFS 209
Cross-listed with: ERM 450

WFS 452: Ichthyology
2 Credits

Study of the structure, taxonomy, systematics, and natural history of freshwater and marine fishes.

Prerequisite: BIOL 110, BIOL 240W

WFS 453: Ichthyology Laboratory
2 Credits

Identification of fishes, major fish families, use of keys.

Prerequisite: BIOL 110, BIOL 240W. Prerequisite or concurrent: WFS 452

WFS 454: Field Ichthyology
2 Credits

Introduction to collection and field identification of the fishes of Pennsylvania. WFS 454 Field Ichthyology (2) This course is designed to familiarize students with collection, observation, and field identification of Pennsylvania’s fish fauna. Students are taught how to collect, preserve, catalog, curate, and observe fishes. Additionally, they are taught how to gather pertinent in situ behavioral and distributional information on fishes and how to manage, record, and store field data. With the increasing emphasis on biodiversity and environmental monitoring, students need to be able to collect, manage, and store data as well as secure the chain of custody. This course is offered annually at the end of spring semester at the Tom Ridge Environmental Center in Erie, PA. Classes begin Sunday night at 1800 and extend until 1700 on Friday. After the three-hour introductory class, students meet each day at the Tom Ridge Environmental Center at 0700. Field collections/observations begin promptly, and end about 1700. Students reassemble in the laboratory at 1830 for a two-hour discussion of the day’s activities. On one day, a series of night collections is made that extends until midnight. Students are responsible for their motel and food expenses during the week. All transportation to and from the collection sites is provided.

Prerequisite: BIOL 110, BIOL 240W

WFS 460: Wildlife Behavior
3 Credits

Scholarly discussion and critique of history, concepts, and application of wildlife behavioral concepts to conservation issues. WFS 460 Wildlife Conservation Behavior (3) The course will give an in-depth coverage of concepts related to an understanding of wildlife behavior. Particular focus will be given to a discussion, critique, and development of these concepts and their application to contemporary issues in conservation and natural resource management of wildlife because there is a general lack of understanding of behavior by conservationists and natural resource managers.

Prerequisite: at least 6 credits in general wildlife or biology

WFS 461: Animal Welfare: Science and Ethics
3 Credits

Understanding animal welfare and well-being in farmed, wild and captive animals, and the implications for policy, legislation and conservation. Whether we interact with farmed animals, wild animals in natural settings, or captive reared wild animals bred for research or for reintroductions, there is a growing interest in their welfare. What do animals need to manifest good welfare and well-being? To find answers we need to devise experiments that determine what animals want and what they find aversive. This allows us to find ways to decrease fear and stress associated with handling and captivity. This course covers the practical issues of animal welfare; animal ethics in wildlife management, conservation, and agriculture; and the use of animals in research. The course provides a framework with which to consider philosophical positions on animal use (covering aspects such as rights-based views versus utilitarian views) and the history of ethical debate over the interactions that humans have with other species. The course also addresses the current social, economic, and legal developments related to animal welfare and animal ethics.

Prerequisite: BIOL 110 or WFS 209

WFS 462: Amphibians and Reptiles
3 Credits

Critique of global evolution and conservation of amphibians and reptiles, focusing on Northeastern U.S. natural history and ecology. WFS 462 Amphibians and Reptiles (3) This course explores the evolution, ecology, and conservation of amphibians and reptiles. This course is open to all students with some background in biology. The objectives of this course are for students to 1) describe the evolution, anatomy, reproduction, and physiology of amphibians and reptiles, 2) place contemporary research in the context of the natural history traits and behavioral ecology of herps, and 3) critically evaluate the application of these concepts to natural resource management for salamander, frog, turtle, lizard, and snake species and populations. Evaluation methods include minute papers and exams.

Prerequisite: 5th semester standing or higher and 6 credits of general biology
WFS 463: Fishery Management

3 Credits

Management of sport and commercial fisheries, including biological, political, social, and economic factors; regulations and other management techniques. WFS 463W Fishery Management (3) This course will introduce students to the management of recreational and commercial fisheries. The course emphasizes fishery management as a goal-oriented process that adapts over time to changes in fish populations and societal goals. Students will learn to recognize and understand that ecological, economic, political, and social forces shape this management process. Major methods of fisheries management involving people, population, and habitat management will be surveyed. Case studies highlighting the application of these management strategies to current fishery management are explored. Writing reports and management plans is emphasized.

Prerequisite: WFS 209, WFS 300, WFS 301, WFS 310

Writing Across the Curriculum

WFS 494: Undergraduate Research

1-12 Credits/Maximum of 999

Supervised student activities on research projects identified on an individual or small group basis.

Prerequisite: Permission of the Wildlife and Fisheries Science Program

WFS 494H: Undergraduate Research

1-12 Credits/Maximum of 999

Supervised student activities on research projects identified on an individual or small group basis

Prerequisite: Permission of the Wildlife and Fisheries Science honors adviser, Schreyer Honors College Honors

WFS 495: Wildlife/Fisheries Internship

1-6 Credits/Maximum of 6

Supervised field experience related to the student’s major.

Prerequisite: approval of proposed assignment by instructor prior to registration

Full-Time Equivalent Course

WFS 496: Independent Studies

1-18 Credits/Maximum of 18

Creative projects, including research and design, which are supervised on an individual basis and which fall outside the scope of formal courses.

WFS 497: Special Topics

1-9 Credits/Maximum of 9

Formal courses given infrequently to explore, in depth, a comparatively narrow subject which may be topical or of special interest.