At which campus can I study this program?
Entrance to Major
In order to be eligible for entrance to this major, students must satisfy the following requirements by the end of the semester during which the admission to major process is carried out.
- Completed 29-55 cumulative credits (credits completed at Penn State for which a quality letter grade was earned)
- Completed with a C or better the following courses: EDSGN 100, CHEM 110, MATH 140, MATH 141, and PHYS 211
- Attained at least a 2.6 cumulative grade point average
* | In the event that the major is under enrollment control, a higher minimum cumulative grade-point average is likely to be needed and students must be enrolled in the College of Engineering or Division of Undergraduate Studies at the time of confirming their major choice. |
Degree Requirements
For the Bachelor of Science degree in Nuclear Engineering, a minimum of 129 credits is required:
Requirement | Credits |
---|---|
General Education | 45 |
Requirements for the Major | 111 |
27 of the 45 credits for General Education are included in the Requirements for the Major. This includes: 9 credits of GN courses; 6 credits of GQ courses; 3 credits of GS courses; 9 credits of GWS courses.
General Education
Connecting career and curiosity, the General Education curriculum provides the opportunity for students to acquire transferable skills necessary to be successful in the future and to thrive while living in interconnected contexts. General Education aids students in developing intellectual curiosity, a strengthened ability to think, and a deeper sense of aesthetic appreciation. These are requirements for all baccalaureate students and are often partially incorporated into the requirements of a program. For additional information, see the General Education Requirements section of the Bulletin and consult your academic adviser.
The keystone symbol appears next to the title of any course that is designated as a General Education course. Program requirements may also satisfy General Education requirements and vary for each program.
Foundations (grade of C or better is required.)
- Quantification (GQ): 6 credits
- Writing and Speaking (GWS): 9 credits
Knowledge Domains
- Arts (GA): 6 credits
- Health and Wellness (GHW): 3 credits
- Humanities (GH): 6 credits
- Social and Behavioral Sciences (GS): 6 credits
- Natural Sciences (GN): 9 credits
Integrative Studies (may also complete a Knowledge Domain requirement)
- Inter-Domain or Approved Linked Courses: 6 credits
University Degree Requirements
First Year Engagement
All students enrolled in a college or the Division of Undergraduate Studies at University Park, and the World Campus are required to take 1 to 3 credits of the First-Year Seminar, as specified by their college First-Year Engagement Plan.
Other Penn State colleges and campuses may require the First-Year Seminar; colleges and campuses that do not require a First-Year Seminar provide students with a first-year engagement experience.
First-year baccalaureate students entering Penn State should consult their academic adviser for these requirements.
Cultures Requirement
6 credits are required and may satisfy other requirements
- United States Cultures: 3 credits
- International Cultures: 3 credits
Writing Across the Curriculum
3 credits required from the college of graduation and likely prescribed as part of major requirements.
Total Minimum Credits
A minimum of 120 degree credits must be earned for a baccalaureate degree. The requirements for some programs may exceed 120 credits. Students should consult with their college or department adviser for information on specific credit requirements.
Quality of Work
Candidates must complete the degree requirements for their major and earn at least a 2.00 grade-point average for all courses completed within their degree program.
Limitations on Source and Time for Credit Acquisition
The college dean or campus chancellor and program faculty may require up to 24 credits of course work in the major to be taken at the location or in the college or program where the degree is earned. Credit used toward degree programs may need to be earned from a particular source or within time constraints (see Senate Policy 83-80). For more information, check the Suggested Academic Plan for your intended program.
Requirements for the Major
To graduate, a student enrolled in the major must earn a grade of C or better in each course designated by the major as a C-required course, as specified by Senate Policy 82-44.
Code | Title | Credits |
---|---|---|
Prescribed Courses | ||
CHEM 111 | Experimental Chemistry I ![]() | 1 |
EE 212 | Introduction to Electronic Measuring Systems | 3 |
EMCH 211 | Statics | 3 |
EMCH 212 | Dynamics | 3 |
EMCH 213 | Strength of Materials | 3 |
EMCH 315 | Mechanical Response of Engineering Materials | 2 |
EMCH 316 | Experimental Determination of Mechanical Response of Materials | 1 |
MATH 230 | Calculus and Vector Analysis | 4 |
ME 300 | Engineering Thermodynamics I | 3 |
ME 320 | Fluid Flow | 3 |
ME 410 | Heat Transfer | 3 |
NUCE 310W | Issues in Nuclear Engineering | 2 |
NUCE 403 | Advanced Reactor Design | 3 |
NUCE 451 | Experiments in Reactor Physics | 3 |
NUCE 431W | Nuclear Reactor Core Design Synthesis | 4 |
PHYS 214 | General Physics: Wave Motion and Quantum Physics ![]() | 2 |
Prescribed Courses: Require a grade of C or better | ||
CHEM 110 | Chemical Principles I ![]() | 3 |
EDSGN 100 | Cornerstone Engineering Design | 3 |
ENGL 202C | Effective Writing: Technical Writing ![]() | 3 |
MATH 140 | Calculus With Analytic Geometry I ![]() | 4 |
MATH 141 | Calculus with Analytic Geometry II ![]() | 4 |
MATH 251 | Ordinary and Partial Differential Equations | 4 |
NUCE 301 | Fundamentals of Reactor Physics | 4 |
NUCE 302 | Introduction to Reactor Design | 4 |
NUCE 309 | Analytical Techniques for Nuclear Concept | 3 |
NUCE 430 | Design Principles of Reactor Systems | 3 |
NUCE 450 | Radiation Detection and Measurement | 3 |
PHYS 211 | General Physics: Mechanics ![]() | 4 |
PHYS 212 | General Physics: Electricity and Magnetism ![]() | 4 |
Additional Courses | ||
Select 1 credit of First-Year Seminar | 1 | |
CMPSC 200 | Programming for Engineers with MATLAB ![]() | 3 |
or CMPSC 201 | Programming for Engineers with C++ ![]() | |
Select one of the following: | 3 | |
Introductory Microeconomic Analysis and Policy ![]() | ||
Introductory Macroeconomic Analysis and Policy ![]() | ||
Introduction to Energy and Earth Sciences Economics ![]() | ||
Select 6 credits, of which 3 credits must be designated as design, from the following: | 6 | |
Medical Imaging | ||
Nuclear and Radiochemistry | ||
Radiation Shielding | ||
Nuclear Materials | ||
Radiological Safety | ||
Radioactive Waste Control | ||
Power Plant Simulation | ||
Introduction to Plasmas | ||
Independent studies | ||
Special Topics | ||
500-level NUCE courses with approval of adviser | ||
Additional Courses: Require a grade of C or better | ||
CAS 100A | Effective Speech ![]() | 3 |
or CAS 100B | Effective Speech ![]() | |
ENGL 15 | Rhetoric and Composition ![]() | 3 |
or ENGL 30H | Honors Rhetoric and Composition ![]() | |
Supporting Courses and Related Areas | ||
Select 3 credits in General Technical Elective (GTE) courses from department list 1,2 | 3 |
1 | These courses may have to be chosen so that the engineering design or engineering science requirements for the major are met. |
2 | Students who complete Basic ROTC may substitute 6 of the ROTC credits for 3 credits of GTE and 3 credits of GHW. |
Program Educational Objectives
Accordingly, we will endeavor to maintain and provide a curriculum that prepares our graduates such that:
- Within two to three years of graduation, we expect the majority of our B.S. graduates to:
- be working in industry, especially related to nuclear power engineering,
- be working in government agencies or national laboratories,
- be pursuing advanced degrees.
- We expect that our students will continue to develop professionally and establish themselves in their careers and in this way may take the opportunity to further their education and training by attending graduate school or by pursuing other professional development.
Student Outcomes
Student outcomes describe what students are expected to know and be able to do by the time of graduation. The Nuclear Engineering program is designed to enable students to:
- Identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- Communicate effectively with a range of audiences
- Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- Acquire and apply new knowledge as needed, using appropriate learning strategies.
Academic Advising
The objectives of the university’s academic advising program are to help advisees identify and achieve their academic goals, to promote their intellectual discovery, and to encourage students to take advantage of both in-and out-of class educational opportunities in order that they become self-directed learners and decision makers.
Both advisers and advisees share responsibility for making the advising relationship succeed. By encouraging their advisees to become engaged in their education, to meet their educational goals, and to develop the habit of learning, advisers assume a significant educational role. The advisee’s unit of enrollment will provide each advisee with a primary academic adviser, the information needed to plan the chosen program of study, and referrals to other specialized resources.
READ SENATE POLICY 32-00: ADVISING POLICY
University Park
Arthur Motta
Professor and Chair of Nuclear Engineering
138 Reber Building
University Park, PA 16802
814-865-0036
atm2@psu.edu
Suggested Academic Plan
The suggested academic plan(s) listed on this page are the plan(s) that are in effect during the 2020-21 academic year. To access previous years' suggested academic plans, please visit the archive to view the appropriate Undergraduate Bulletin edition (Note: the archive only contain suggested academic plans beginning with the 2018-19 edition of the Undergraduate Bulletin).
Nuclear Engineering, B.S. at University Park Campus
The course series listed below provides only one of the many possible ways to move through this curriculum. The University may make changes in policies, procedures, educational offerings, and requirements at any time. This plan should be used in conjunction with your degree audit (accessible in LionPATH as either an Academic Requirements or What If report). Please consult with a Penn State academic adviser on a regular basis to develop and refine an academic plan that is appropriate for you.
If you are starting at a campus other than the one this plan is ending at, please refer to: http://advising.engr.psu.edu/degree-requirements/academic-plans-by-major.aspx
First Year | |||
---|---|---|---|
Fall | Credits | Spring | Credits |
CHEM 110 (GN)*#† | 3 | ENGL 15, 30H, or ESL 15 (GWS)‡† | 3 |
CHEM 111 (GN) | 1 | MATH 141 or 141E (GQ)*‡#† | 4 |
ECON 102 or 104 (GS)† | 3 | PHYS 211 (GN, PHYSICS 211L & PHYSICS 211R)*#† | 4 |
EDSGN 100*# | 3 | First Year Seminar† | 1 |
MATH 140 or 140E (GQ)*‡#† | 4 | General Education Course† | 3 |
General Education Course† | 3 | General Education Course (GHW)† | 1.5 |
17 | 16.5 | ||
Second Year | |||
Fall | Credits | Spring | Credits |
CMPSC 201 (CMPSC 200 acceptable) | 3 | EMCH 212 | 3 |
EMCH 211 | 3 | EMCH 213 or EMCH 213D | 3 |
MATH 251* | 4 | MATH 230 | 4 |
PHYS 212 (GN, PHYSICS 212L & PHYSICS 212R)*† | 4 | ME 300 | 3 |
General Education Course† | 3 | PHYS 214 | 2 |
General Education Course (GHW)† | 1.5 | ||
17 | 16.5 | ||
Third Year | |||
Fall | Credits | Spring | Credits |
CAS 100A or 100B (GWS)‡† | 3 | EE 212 | 3 |
ME 320 | 3 | EMCH 315 | 2 |
NUCE 301* | 4 | EMCH 316 | 1 |
NUCE 309* | 3 | ME 410 | 3 |
NUCE 310W | 2 | NUCE 302* | 4 |
NUCE 450* | 3 | ||
15 | 16 | ||
Fourth Year | |||
Fall | Credits | Spring | Credits |
ENGL 202C (GWS)‡† | 3 | NUCE 431W | 4 |
NUCE 403 | 3 | General Technical Elective (GTE) | 3 |
NUCE 430* | 3 | Nuclear Engineering Elective (NETE) | 3 |
NUCE 451 | 3 | General Education Course† | 3 |
Nuclear Engineering Elective (NETE) | 3 | General Education Course† | 3 |
15 | 16 | ||
Total Credits 129 |
* | Course requires a grade of C or better for the major |
‡ | Course requires a grade of C or better for General Education |
# | Course is an Entrance to Major requirement |
† | Course satisfies General Education and degree requirement |
University Requirements and General Education Notes:
US and IL are abbreviations used to designate courses that satisfy University Requirements (United States and International Cultures).
W, M, X, and Y are the suffixes at the end of a course number used to designate courses that satisfy University Writing Across the Curriculum requirement.
GWS, GQ, GHW, GN, GA, GH, and GS are abbreviations used to identify General Education program courses. General Education includes Foundations (GWS and GQ) and Knowledge Domains (GHW, GN, GA, GH, GS, and Integrative Studies). Foundations courses (GWS and GQ) require a grade of ‘C’ or better.
Integrative Studies courses are required for the General Education program. N is the suffix at the end of a course number used to designate an Inter-Domain course and Z is the suffix at the end of a course number used to designate a Linked course.
All incoming Schreyer Honors College first-year students at University Park will take ENGL 137H/CAS 137H in the fall semester and ENGL 138T/CAS 138T in the spring semester. These courses carry the GWS designation and replace both ENGL 30H and CAS 100. Each course is 3 credits.
College Notes:
- General Technical Elective (GTE): Select from NUCE program lists. Students who complete the ROTC Program may substitute 3 ROTC credits for the GHW requirement and 3 ROTC credits for the GTE requirement. Students who complete three co-op rotations may substitute 3 co-op credits for the GTE requirement.
- Health and Physical Activity Elective: Students who complete the ROTC Program may substitute 3 ROTC credits for the GHW requirement and 3 ROTC credits for the GTE requirement.
- Nuclear Engineering Elective (NETE): Select from NUCE program lists.
- These courses offered at University Park in fall semester only:
- These courses offered at University Park in spring semester only:
Career Paths
Penn State’s nuclear engineering program relates theory to practice in a way that most universities cannot. Penn State is one of the few universities where undergraduate students can work with a functioning nuclear reactor. The Breazeale Nuclear Reactor is the longest operating licensed research reactor in the country and is one of the premier nuclear research facilities in the world. In addition to University facilities, students also gain professional experience through an industry-sponsored project in their capstone design course. Penn State’s collaboration with Westinghouse, as well as other nuclear companies and agencies, provides an unmatched educational experience using the simulation and analysis codes currently used in industry. Penn State also collaborates effectively with industry, the military, and government as sponsors of the capstone design project.
Careers
Many nuclear engineering graduates work for electric power companies that use nuclear power plants or help service and maintain these plants. Other graduates work in industries that use radioactivity or radiation, such as medicine, food, and agriculture. These fields need nuclear engineers to detect problems, monitor processes, and protect the public. The federal government also hires nuclear engineers to design next-generation reactors for submarines, aircraft carriers, and space probes; regulate nuclear power or radiation uses; and develop advanced technologies that will be used in future power plants. Other industries where nuclear engineers may work include energy, government, medicine, agriculture, and space.
MORE INFORMATION ABOUT POTENTIAL CAREER OPTIONS FOR GRADUATES OF THE NUCLEAR ENGINEERING PROGRAM
Opportunities for Graduate Studies
Penn State University is home to the Breazeale Nuclear Reactor, one of the premier reactor research facilities in the country. Our students have the unique opportunity to learn and research in state-of-the-art experimental facilities under the supervision of internationally renowned faculty, scientists, and engineers. We have especially strong research programs in nuclear power, reactor design, nuclear science, and nuclear materials.
Accreditation
The baccalaureate program in Nuclear Engineering is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org/.
Professional Licensure/Certification
Many U.S. states and territories require professional licensure/certification to be employed. If you plan to pursue employment in a licensed profession after completing this program, please visit the Professional Licensure/Certification Disclosures by State interactive map.
Contact
University Park
DEPARTMENT OF NUCLEAR ENGINEERING
205 Hallowell Building
University Park, PA 16802
814-863-6938
bah41@psu.edu