Industrial Engineering, B.S. (Behrend)

Program Code: IESBC_BS

Program Description

The undergraduate program in industrial engineering, being the first established in the world, has a long tradition of providing a strong, technical, hands-on education in design, control, and operation of manufacturing processes and systems. The curriculum provides a broad-based education in manufacturing, operations research and ergonomics through a base of mathematics, physical and engineering sciences, and laboratory and industrial experiences. It builds a strong foundation for the development of a professionally competent and versatile industrial engineer, able to function in a traditional manufacturing environment as well as in a much broader economy, including careers in financial services, communication, information technology, transportation, health care, consulting, or academia.

After completing courses required for the core and fundamental competencies in the major, students can choose two IE technical elective courses from a department list. In addition, students must also complete the three-credit capstone design course.

What is Industrial Engineering?

Industrial Engineering is rooted in the sciences of engineering, the study of systems, and the management of people. Industrial engineers are big-picture problem solvers who optimize complex engineering systems and processes. They bring together people, machinery, materials, information, energy, and financial resources to improve efficiency, performance, quality, and safety while reducing cost and waste. According to the Institute of Industrial & Systems Engineers, Industrial Engineers "work to eliminate waste of time, money, materials, energy, and other commodities." Because it is a broad and versatile discipline, study of industrial engineering prepares you for careers in every sector of the economy.

You Might Like This Program If...

Largely based in math and science, while incorporating business and psychology, the industrial engineering program is designed to prepare students to become leaders in engineering. We provide students with a comprehensive education in human factors/ergonomics; manufacturing; operations research; and supply chain/service engineering through coursework and hands-on experience. Our students become innovators who discover new solutions that address evolving challenges in a wide variety of sectors including academia, banking, communications, consulting, healthcare, information technology, transportation, etc.

Entrance to Major

In order to be eligible for entrance to this major, students must satisfy the following requirements by the end of the semester during which the admission to major process is carried out.

  • Completed 29-55 cumulative credits (credits completed at Penn State for which a quality letter grade was earned)
  • Completed with a C or better the following courses: EDSGN 100, CHEM 110, MATH 140, MATH 141, and PHYS 211
  • Attained at least a 2.6 cumulative grade point average

In the event that the major is under enrollment control, a higher minimum cumulative grade-point average is likely to be needed and students must be enrolled in the College of Engineering or Division of Undergraduate Studies at the time of confirming their major choice.

Degree Requirements

For the Bachelor of Science degree in Industrial Engineering, a minimum of 129 credits is required:

Requirement Credits
General Education 45
Requirements for the Major 111

27 of the 45 credits for General Education are included in the Requirements for the Major. This includes: 9 credits of GN courses; 6 credits of GQ courses; 3 credits of GS courses; 9 credits of GWS courses.

Requirements for the Major

To graduate, a student enrolled in the major must earn a grade of C or better in each course designated by the major as a C-required course, as specified by Senate Policy 82-44.

Prescribed Courses
CHEM 111Experimental Chemistry I Keystone/General Education Course1
IE 425Stochastic Models in Operations Research3
IE 453Simulation Modeling for Decision Support3
IE 460Service Systems Engineering3
IE 470Manufacturing System Design and Analysis3
IE 480WCapstone Design Project3
MATH 220Matrices Keystone/General Education Course2
MATH 231Calculus of Several Variables2
MATH 250Ordinary Differential Equations3
MATSE 259Properties and Processing of Engineering Materials3
PHYS 212General Physics: Electricity and Magnetism Keystone/General Education Course4
Prescribed Courses: Require a grade of C or better
CHEM 110Chemical Principles I Keystone/General Education Course3
EDSGN 100Cornerstone Engineering Design3
EMCH 210Statics and Strength of Materials5
ENGL 202CEffective Writing: Technical Writing Keystone/General Education Course3
IE 302Engineering Economy3
IE 305Product Design, Specification and Measurement3
IE 322Probabilistic Models in Industrial Engineering3
IE 323Statistical Methods in Industrial Engineering3
IE 327Introduction to Work Design3
IE 330Engineering Analytics3
IE 405Deterministic Models in Operations Research3
MATH 140Calculus With Analytic Geometry I Keystone/General Education Course4
MATH 141Calculus with Analytic Geometry II Keystone/General Education Course4
PHYS 211General Physics: Mechanics Keystone/General Education Course4
Additional Courses
Select 1 credit of First-Year Seminar1
CMPSC 200Programming for Engineers with MATLAB Keystone/General Education Course3
or CMPSC 201 Programming for Engineers with C++ Keystone/General Education Course
ECON 102Introductory Microeconomic Analysis and Policy Keystone/General Education Course3
or ECON 104 Introductory Macroeconomic Analysis and Policy Keystone/General Education Course
Select one of the following: 13
Cognitive Work Design
Human/Computer Interface Design
Work Design - Productivity and Safety
Additional Courses: Require a grade of C or better
CAS 100AEffective Speech Keystone/General Education Course3
or CAS 100B Effective Speech Keystone/General Education Course
ENGL 15Rhetoric and Composition Keystone/General Education Course3
or ENGL 30H Honors Rhetoric and Composition Keystone/General Education Course
Supporting Courses and Related Areas
Select 3 credits as a science selection from department list3
Select 6 credits as non-major electives from department list 26
Select 3 credits in manufacturing processes from department list 13
Select 6 credits of technical electives from the department list; all 6 credits must be IE credits6

The course not taken to satisfy this requirement can be taken as a technical elective. Please see the department list.


Please see the department list.

General Education

Connecting career and curiosity, the General Education curriculum provides the opportunity for students to acquire transferable skills necessary to be successful in the future and to thrive while living in interconnected contexts. General Education aids students in developing intellectual curiosity, a strengthened ability to think, and a deeper sense of aesthetic appreciation. These are requirements for all baccalaureate students and are often partially incorporated into the requirements of a program. For additional information, see the General Education Requirements section of the Bulletin and consult your academic adviser.

The keystone symbol Keystone/General Education Course appears next to the title of any course that is designated as a General Education course. Program requirements may also satisfy General Education requirements and vary for each program.

Foundations (grade of C or better is required and Inter-Domain courses do not meet this requirement.)

  • Quantification (GQ): 6 credits
  • Writing and Speaking (GWS): 9 credits

Breadth in the Knowledge Domains (Inter-Domain courses do not meet this requirement.)

  • Arts (GA): 3 credits
  • Health and Wellness (GHW): 3 credits
  • Humanities (GH): 3 credits
  • Social and Behavioral Sciences (GS): 3 credits
  • Natural Sciences (GN): 3 credits

Integrative Studies

  • Inter-Domain Courses (Inter-Domain): 6 credits


  • GN, may be completed with Inter-Domain courses: 3 credits
  • GA, GH, GN, GS, Inter-Domain courses. This may include 3 credits of World Language course work beyond the 12th credit level or the requirements for the student’s degree program, whichever is higher: 6 credits

University Degree Requirements

First Year Engagement

All students enrolled in a college or the Division of Undergraduate Studies at University Park, and the World Campus are required to take 1 to 3 credits of the First-Year Seminar, as specified by their college First-Year Engagement Plan.

Other Penn State colleges and campuses may require the First-Year Seminar; colleges and campuses that do not require a First-Year Seminar provide students with a first-year engagement experience.

First-year baccalaureate students entering Penn State should consult their academic adviser for these requirements.

Cultures Requirement

6 credits are required and may satisfy other requirements

  • United States Cultures: 3 credits
  • International Cultures: 3 credits

Writing Across the Curriculum

3 credits required from the college of graduation and likely prescribed as part of major requirements.

Total Minimum Credits

A minimum of 120 degree credits must be earned for a baccalaureate degree. The requirements for some programs may exceed 120 credits. Students should consult with their college or department adviser for information on specific credit requirements.

Quality of Work

Candidates must complete the degree requirements for their major and earn at least a 2.00 grade-point average for all courses completed within their degree program.

Limitations on Source and Time for Credit Acquisition

The college dean or campus chancellor and program faculty may require up to 24 credits of course work in the major to be taken at the location or in the college or program where the degree is earned. Credit used toward degree programs may need to be earned from a particular source or within time constraints (see Senate Policy 83-80). For more information, check the Suggested Academic Plan for your intended program.

Program Educational Objectives

We expect our graduates to:

  1. Participate in and lead cross-functional teams, designing, implementing and improving processes and systems in the manufacturing, service, or government sectors;
  2. Work effectively in managerial and leadership positions;
  3. Work and communicate effectively with internal and external team members in the global environment; and
  4. Engage in continuous learning through varied work assignments, graduate school, professional training programs, and independent study.

Program Outcomes

The following outcomes are included in the courses taught in the program:

  1. Management and Information Systems for Industrial Engineering: apply time value of money to make financial decisions and understand cost-accounting principles; understand probability concepts applicable to solve engineering problems; including reliability issues; conduct tests of hypotheses, create regression models and understand and apply statistical quality control methods such as process capability and control charts; formulate, solve and analyze real problems using Markov chains, network models, dynamic programming, queuing theory and inventory models; create simulation models of manufacturing and service systems and analyze simulation output; and gain an in-depth knowledge of implementation-related issues and theoretical aspects of database and Web-based operations related to industrial engineering.
  2. Manufacturing Engineering: understand information contained in typical specifications and methods of product verification and conformance to specifications; and program flexible manufacturing equipment and system controllers; design logical manufacturing layouts and implement contemporary systems issues.
  3. Human Factors: analyze and design both the job and the work site in a cost-effective manner, as well as measure the resulting output; understand and apply cognitive systems engineering: identify visual, auditory, cognitive, perceptual and environmental aspects of human performance, perform task analysis and evaluate human-computer interfaces; and perform work measurement, develop an MTM analysis and carry out a work sampling study.
  4. General: present engineering study results in technical reports and in oral presentations, demonstrate life-long learning by synthesizing information from several sources, work effectively in groups on case studies and projects, demonstrate knowledge of contemporary issues, understand professional and ethical responsibility and the impact of engineering decisions in a global and societal context; and design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.

Academic Advising

The objectives of the university's academic advising program are to help advisees identify and achieve their academic goals, to promote their intellectual discovery, and to encourage students to take advantage of both in-and out-of class educational opportunities in order that they become self-directed learners and decision makers.

Both advisers and advisees share responsibility for making the advising relationship succeed. By encouraging their advisees to become engaged in their education, to meet their educational goals, and to develop the habit of learning, advisers assume a significant educational role. The advisee's unit of enrollment will provide each advisee with a primary academic adviser, the information needed to plan the chosen program of study, and referrals to other specialized resources.



Omar Ashour, Ph.D.
Program Contact and Associate Professor
213 AMIC Building
Erie, PA 16563

University Park

Giancarlo Labruna
Academic Adviser
113A Leonhard Building
University Park, PA 16802

Suggested Academic Plan

The suggested academic plan(s) listed on this page are the plan(s) that are in effect during the 2024-25 academic year. To access previous years' suggested academic plans, please visit the archive to view the appropriate Undergraduate Bulletin edition.

Industrial Engineering, B.S. at Erie Campus

The course series listed below provides only one of the many possible ways to move through this curriculum. The University may make changes in policies, procedures, educational offerings, and requirements at any time. This plan should be used in conjunction with your degree audit (accessible in LionPATH as either an Academic Requirements or What If report). Please consult with a Penn State academic adviser on a regular basis to develop and refine an academic plan that is appropriate for you.

First Year
CHEM 110*#†3CMPSC 2003
CHEM 1111ECON 102 or 1043
EDSGN 100S*#3MATH 141*‡#†4
ENGL 15‡†3PHYS 211*#†4
MATH 140*‡#†4General Education Course3
General Education Course3 
 17 17
Second Year
CAS 100A or 100B‡†3EMCH 213*3
EMCH 211*3MATH 2503
MATH 2202Engineering Elective33
MATH 2312Engineering Elective33
PHYS 2124Science Elective33
General Education Course3 
 17 15
Third Year
IE 302*3ENGL 202C‡† 3
IE 305*13IE 311 or 30723
IE 3223IE 323*23
IE 327*23IE 330*23
IE 405*3MATSE 2593
General Education Course (GHW)1.5General Education Course (GHW)1.5
 16.5 16.5
Fourth Year
IE 41813IE 45323
IE 42513IE 46023
IE 47013IE 480W23
Specialization Course*1,51IE Technical Elective43
IE Technical Elective43General Education Course3
General Education Course3 
 16 15
Total Credits 130

Course requires a grade of C or better for the major

Course requires a grade of C or better for General Education


Course is an Entrance to Major requirement

Course satisfies General Education and degree requirement


This course is only offered in the FALL SEMESTER


This course is only offered in the SPRING SEMESTER


Ask department for list


Must be an IE course


Students should take IE 497 (FALL SEMESTER ONLY)

University Requirements and General Education Notes:

US and IL are abbreviations used to designate courses that satisfy Cultural Diversity Requirements (United States and International Cultures).

W, M, X, and Y are the suffixes at the end of a course number used to designate courses that satisfy University Writing Across the Curriculum requirement.

General Education includes Foundations (GWS and GQ), Knowledge Domains (GHW, GN, GA, GH, GS) and Integrative Studies (Inter-domain) requirements. N or Q (Honors) is the suffix at the end of a course number used to help identify an Inter-domain course, but the inter-domain attribute is used to fill audit requirements. Foundations courses (GWS and GQ) require a grade of 'C' or better.

Program Note:

  • Only students who have gone through the entrance to major (ETM) process and have been accepted into this major may register for junior and senior-level IE courses.

Career Paths

An undergraduate degree in industrial engineering from Penn State is beneficial in a number of sectors, from finance and banking to manufacturing and material handling to ergonomics and workplace safety to a wide variety of industries within the service world (including theme parks, call centers, hospitals, etc.). Industrial engineers also have an attractive background to a number of graduate degrees that would compliment their skills including engineering design, operations research, mechanical engineering, supply chain management, business management, and more. 


  • Human Factors/Ergonomics: Business intelligence team leader, cognitive engineer, ergonomics assessment specialist, ergonomics expert, design engineer, systems engineer, usability expert, user experience engineer.
  • Manufacturing: Manufacturing operations manager, production engineer, process control analyst, quality engineering manager, lean Six Sigma manager, product design/specification specialist, cost analysis manager, supply chain manager.
  • Operations Research: Operations research engineer, applied research manager, performance engineer, process improvement engineer, global business intelligence and analytics director, operations engineer, statistician.
  • Production, Supply Chain, and Service: Enterprise Engineering Analytics manager, global statistics manager, quality assurance director, strategic sourcing manager, operations engineer, new product engineer, process engineer, e-commerce manager, material scientists, service business development manager, Six Sigma analyst.


Opportunities for Graduate Studies

Opportunities for students with an undergraduate degree in industrial engineering are vast. The following disciplines would highly value an education in industrial engineering in graduate studies: engineering science and mechanics, business management, supply chain management, mechanical engineering, statistics, computer systems, engineering design, operations research, systems engineering, engineering management, economics and more.


Professional Resources


The Bachelor of Science in Industrial Engineering at Penn State Behrend is accredited by the Engineering Accreditation Commission of ABET,, under the commission’s General Criteria and Program Criteria for Industrial and Similarly Named Engineering Programs.

Professional Licensure/Certification

Many U.S. states and territories require professional licensure/certification to be employed. If you plan to pursue employment in a licensed profession after completing this program, please visit the Professional Licensure/Certification Disclosures by State interactive map.



242 Jack Burke Research and Economic Development Center
5101 Jordan Road
Erie, PA 16563

University Park

310 Leonhard Building
University Park, PA 16802